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The greatest enemy of knowledge is not ignorance,
it is the illusion of knowledge.

— Daniel J. Boorstin (often misattributed to Stephen Hawking)

To know that we know what we know,
and to know that we do not know what we do not know,

that is true knowledge.

— Nicolaus Copernicus

Real knowledge is to know the extent of one’s ignorance.

— Confucius





A B S T R A C T

Advances in artificial intelligence (ai) are rapidly transforming our
world, with systems now matching or surpassing human capabilities
in areas ranging from game-playing to scientific discovery. Much
of this progress traces back to machine learning (ml), particularly
deep learning, and its ability to uncover meaningful patterns and
representations in data. However, true intelligence in ai demands
more than raw predictive power; it requires a principled approach to
making decisions under uncertainty. This highlights the necessity of
probabilistic ml, which offers a systematic framework for reasoning
about the unknown in ml models through probability theory and
Bayesian inference.

Gaussian processes (gps) stand out as a quintessential probabilistic
model, known for their flexibility, data efficiency, and well-calibrated
uncertainty estimates. gps are integral to many sequential decision-
making algorithms, notably Bayesian optimisation (bo), which has
emerged as an indispensable tool for optimising expensive and com-
plex black-box objective functions. While considerable efforts have
been made to improve gp scalability, performance gaps persist in prac-
tice when compared against neural networks (nns) largely due to their
lack of representation learning capabilities. Along with other natural
deficiencies of gps, this limitation has hampered the capacity of bo to
address critical real-world optimisation challenges.

This thesis aims to unlock the potential of deep learning within prob-
abilistic methods and reciprocally lend probabilistic perspectives to
deep learning. The key contributions are: (1) Extending orthogonally-
decoupled sparse gp approximations to incorporate nonlinear nn

activation layers as inter-domain features, mitigating the limitations
of prior work and bringing predictive performance closer to nns.
(2) Framing cycle-consistent adversarial networks (cyclegans) for
unpaired image-to-image translation as variational inference (vi) in
an implicit latent variable model, providing a Bayesian perspective
on this powerful class of deep generative models. (3) Introducing a
model-agnostic reformulation of bo based on binary classification that
eliminates restrictions on the underlying representation of the objec-
tive function, enabling the seamless integration of flexible modelling
paradigms like deep learning to tackle complex optimisation problems.
By enriching the interplay between deep learning and probabilistic ml,
this thesis advances the foundations of ai, facilitating the development
of more capable and dependable automated decision-making systems.
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S Y M B O L S A N D N O TAT I O N

Mathematical Relations

a ≜ b a is equal to b by definition

a D
= b a is equal to b in distribution

a ∝ b a is proportional to b, i. e., a = const · b
a ≈ b a is approximately equal to b, i. e., ∥a− b∥ < ϵ

for small real number ϵ > 0

Numbers, Arrays & Sets

a A scalar (integer or real)
a A vector
A A matrix
0n, 0 A vector of zeros of length n or implied by con-

text
In, I Identity matrix with n rows and columns or

dimensionality implied by context
diag a A square, diagonal matrix with diagonal entries

given by a
N, Z The set of natural numbers and integers, respec-

tively
R, C The set of real and complex numbers, respec-

tively
Rd The d-dimensional vector space of real numbers

Linear Algebra

A⊤, a⊤ Transpose of a matrix or vector
A−1 Inverse of square matrix
det A Determinant of square matrix
tr A Trace of square matrix
A ⪰ 0 Matrix A is positive semidefinite
A

1
2 Square root of a matrix, specifically the Cholesky

decomposition: a lower-triangular matrix L that
satisfies LL⊤ = A

Functions & Functional Analysis

f : X → Y A function with domain X and range Y
f : x 7→ g(x) A function that maps x to g(x); i. e., f (x) ≜ g(x)
f ◦ g Composition of functions f and g; f ◦ g : x 7→

f (g(x))
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xxiv Symbols and Notation

O( · ) Asymptotic upper bound (“big O”); f (n) = O(g(n))
for f , g : N → N if f (n)/g(n) is bounded as
n→ ∞

RX The space of functions f : X → R

Hk,H Reproducing kernel Hilbert space associated with
kernel k or implied by context

⟨ · , · ⟩H, ⟨ · , · ⟩ Inner product associated with Hilbert space H
or implied by context

∥ · ∥, ∥ · ∥p L2 norm of a vector; Lp norm if subscript p is
specified

Calculus

dy
dx Total derivative of y with respect to x
∂y
∂x Partial derivative of y with respect to x
∂ f
∂x Jacobian matrix J ∈ Rm×n of f : Rn → Rm
∫

f (x)dx Definite integral over the entire domain of x∫
X f (x)dx Definite integral with respect to x over the set X

Probability and Information Theory

p(x), q(x) A probability density, latter used to emphasise
approximation

x ∼ p(x) Random variable x is distributed according to
p(x)

Ep(x)[ f (x)], E[ f (x)] Expectation of f (x) under p(x) or implied by
context

Cov ( · , · ) Covariance between random variables
H[ · ] Shannon entropy of a random variable
D f [p ∥ q] f -divergence between distributions with densi-

ties p and q
Dkl [p ∥ q] , kl [p ∥ q] Kullback-Leibler divergence between distribu-

tions with densities p and q
U [a, b] Uniform distribution with lower and upper bounds

a and b
Bern(ρ) Bernoulli distribution with parameter ρ

N (x; µ, Σ),N (µ, Σ) Multivariate Gaussian distribution (on x) with
mean µ and covariance Σ

GP( f ; m, k) Gaussian process; f (x) ∼ GP(m(x), k(x, x′)) de-
notes f (x) is a distributed as a Gaussian process
with mean function m and covariance function
(kernel) k

δij Kronecker delta; δij = 1 iff i = j and 0 otherwise
δ(x− x0) Dirac delta on x with point mass at x0

Optimisation

f ∗ = minx f (x) A minimum of function f (x)
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x∗ = arg minx f (x) A minimiser of function f (x)

Special Functions

σ(x) Sigmoid function, typically the logistic sigmoid
x 7→ (1 + exp(−x))−1

relu(x) Rectified linear unit activation; positive part of
x, i. e., x 7→ max(0, x)

Softplus(x) Softplus activation; x 7→ log (1 + exp (x))





1
I N T R O D U C T I O N

Artificial intelligence (ai) stands poised to be among the most disrup-
tive technologies of our era. The breakneck pace of recent ai advance-
ments has been spearheaded by machine learning (ml), particularly machine learning

the resurgence of deep learning. Deep learning is as old as the first deep learning
general-purpose electronic computer; with roots tracing back to the
1940s and ’50s [169, 219], the revival of deep learning, beginning in the
early 2010s, was catalysed by a series of breakthroughs that shattered
previously perceived limitations and captivated the collective imagina-
tion. These breakthroughs span various domains, including computer
vision [84, 133, 211, 217], speech recognition [87, 103], natural lan-
guage processing [21, 274], protein folding [121], generative art and
artificial creativity [86, 104, 208, 215], as well as reinforcement learn-
ing for robotics control [147, 175] and achieving superhuman-level
gameplay [174, 232].

Nevertheless, it is crucial to view these developments as means to
an ultimate end rather than an end in themselves. Arguably, the true
pinnacle of ai’s capabilities lies in optimal decision-making, whether decision-making

systemsthat entails offering analyses and insights to aid humans in making
better decisions or completely automating the decision-making pro-
cess altogether. Practically any task directed towards a well-defined
objective can be boiled down to a cascade of decisions. At a fun-
damental level, operating a vehicle involves a continuous stream of
decisions involving accelerating, braking, and turning. Financial trad-
ing revolves around decisions to buy, sell, or hold various assets. Even
complex engineering tasks, such as designing an aerofoil, involve
a sequence of decisions about adjusting design variables to achieve
desirable aerodynamic characteristics.

Yet, the intricacies of decision-making surpass what any single ad-
vancement in deep learning can address. While convolutional neural
networks (cnns) can facilitate object detection tasks in autonomous ve-
hicles, recurrent neural networks (rnns) can aid in forecasting market
dynamics for systematic trading, and physics-informed nns can assist
in predicting aerodynamic effects, it remains the case that no target
or quantity of interest can be entirely known or predictable (indeed,
if they were, the pursuit of predictive modelling and ml would be
superfluous). Instead, predictions often prove unreliable, or at best,
uncertain, due to the limitations of our knowledge and the complexity uncertainty,

epistemicand variability inherent in the underlying real-world processes. The
uncertainty, aleatoricimpressive power of deep learning models often overshadows their

ignorance of the limits of their own knowledge and the extent of

1
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uncertainty in their predictions. When these predictions are integrated
into a sequential decision-making framework, such uncertainty can
amplify, compound, and lead to catastrophic consequences. In the con-
text of aeronautical engineering, this could result in inefficient designs;
in quantitative finance, it can lead to devastating capital losses; and in
autonomous driving, it can even cost lives.

probabilistic machine learning . Grounded in the laws of
probability and Bayesian statistics [10, 138], probabilistic ml provides aBayesian statistics

probabilistic machine
learning

consistent framework for systematically reasoning about the unknown.
The probabilistic approach to ml acknowledges that the real world
is fraught with uncertainty and embraces this uncertainty as an in-
herent part of decision-making. Unlike traditional methods, including
those of deep learning, it recognises model predictions not as absolute
truths that can be represented as single point estimates produced from apoint estimate

deterministic mapping, but as full probability distributions that capture
the potential outcomes of a random variable as it propagates throughrandom variable

some underlying data-generating process. In a probabilistic model, allprobabilistic model

quantities are treated as random variables governed by probability
distributions – the data are treated as observed variables, which are
influenced by some underlying hidden variables, e. g., the model pa-
rameters. A prior distribution is used to express reasonable values for
these hidden variables and to eliminate implausible ones. The rela-
tionship between observed and hidden variables is described using
the likelihood, and the process of Bayesian inference amounts to calcu-
lating, using basic laws of probability, a posterior distribution over the
hidden factors conditioned on the observed data, which can be seen
as a refinement of the prior beliefs in light of new evidence. While
the posterior distribution can be useful in and of itself, its primary
role lies in facilitating subsequent prediction and decision-making
by providing full probability distributions over predicted outcomes.
This capability allows the decision-maker to assess the range of pos-
sible scenarios and their associated probabilities, enabling a more
nuanced understanding of uncertainty and risk, which is indispens-
able in complex, dynamic environments where the repercussions of
incorrect decisions can be severe. In essence, probabilistic ml equips
autonomous decision-making systems with a probabilistic worldview,
enabling them to navigate ambiguity and make sound decisions in
the face of imperfect information.

probabilistic ml vs . deep learning . While deep learning has
dominated recent ai advances, probabilistic ml remains as important
as ever and continues to offer valuable tools for addressing ai chal-
lenges that can not be fully resolved by deep learning alone. Although
both approaches can be combined to create hybrid methods that
leverage their respective strengths, some defining characteristics have
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traditionally set deep learning apart from probabilistic ml. Perhaps
most notably, probabilistic ml approaches can achieve remarkable
predictive performance even when data is scarce. In contrast, deep
learning models tend to be data-intensive by nature, often demanding
datasets of a scale proportional to their size (i. e., their parameter
count) [106], which has seen explosive growth in recent years [3, 194,
205, 231, 266]. With that being said, inference in many probabilistic
models poses computational problems that are difficult to scale. On
the other hand, deep learning approaches have excelled in scalability,
a key factor contributing to their widespread success. This scalabil-
ity is bolstered by their compatibility with various speed-enhancing
mechanisms such as stochastic optimisation, specialised hardware ac-
celerators (gpus and tpus), as well as distributed and/or cloud-based
computing infrastructure. To bridge this gap, substantial research ef-
fort has been devoted to enabling probabilistic ml to benefit from these
advantages through optimisation-based approximations to Bayesian
inference [118].

Moreover, as mentioned earlier, these paradigms are by no means
mutually exclusive. Indeed, it is often possible to directly extend
existing models with a Bayesian treatment of their parameters, adding
a layer of probabilistic reasoning to the model, and allowing it to not
only make predictions but also estimate the uncertainty associated
with those predictions. An excellent example is the Bayesian neural
network (bnn), which treats the weights as hidden variables and Bayesian neural

networkleverages posterior inference to provide predictions while estimating
associated uncertainties, delivering a more robust and principled
approach to deep learning [18, 154, 185].

The Bayesian formalism naturally gives rise to many popular meth-
ods and paradigms, often in the form of point estimates or other
kinds of approximations. The quintessential example of this is found
in linear regression, in particular, in ridge and lasso regression [260],
which correspond variously to maximum a posteriori (map) estimates maximum a

posterioriin Bayesian linear regression (blr) models with prior distributions pos-
sessing different sparsity-inducing characteristics [82] – more broadly,
mitigations against over-fitting tend to arise organically in Bayesian
methods, which is why they are frequently characterised as being
fundamentally more robust against over-fitting [286, §5.2]. Likewise,
the once à la mode support vector machines (svms) can be seen as
map estimates for a class of nonparametric Bayesian models [195],
dropout [246] in nns can be seen as a variational approximation to
exact inference in bnns [74], and unsupervised learning methods
such as factor analysis (fa) [242] and principal component analysis
(pca) [198] are instances of a class of latent variable models (lvms) [8,
261] known as linear-Gaussian factor models [221], to name just a
few examples. Time and again, classical approaches have not only
benefitted from being viewed through the Bayesian perspective but
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have also been enriched and redefined by the depth of insights this
framework provides.

1.1 thesis goals

The over-arching goal of this thesis is to continue advancing the inte-
gration and cross-pollination between deep learning and probabilistic
ml. We aim to further the interplay between these two fields, both by
incorporating probabilistic interpretations and uncertainty quantifi-
cation into popular deep learning frameworks, and by leveraging the
representational power of deep nns to improve established Bayesian
methods. This dual-pronged approach provides fresh perspectives and
taps the complementary strengths of both paradigms, advancing the
foundations of ai and facilitating the development of more capable
and dependable decision support frameworks. Ultimately, we strive to
unlock the potential of deep learning within high-impact probabilistic
ml methodologies, and to lend useful Bayesian perspectives on current
deep learning techniques.

gaussian process models . Arguably, no family of probabilistic
models embodies the ethos of probabilistic ml and illustrates its nu-
ances and parallels with deep learning quite like the Gaussian process
(gp). Accordingly, they shall occupy a prominent place in our thesis. InGaussian process

particular, gps stand out as the ideal choice when dealing with limited
data, offer the flexibility to encode prior beliefs through the covariance
function, and provide predictive uncertainty estimates with a fine
calibration that is second to none. Conversely, they are challenging to
scale to large datasets, a limitation that has spurred extensive research
and development efforts. Furthermore, in contrast to deep learning
models, which are often lauded for their ability to automatically un-
cover valuable patterns and features in data, gps have at times been
dismissed as unsophisticated smoothing mechanisms [157]. Despite
these apparent disparities, gps are intricately connected to nns in nu-
merous ways. Among these, one of the most classical and well-known
relationships is the convergence of single-layer nns with randomly
initialised weights toward gps in the infinite-width limit [185]. Similar
links have also been identified between gps and infinitely wide deep
nns [143, 166].

In an effort to elevate the representational capabilities of gps to a
level comparable with deep nns, deep gps (dgps) [49] stack together
multiple layers of gps. Additional efforts to construct efficient sparse
gp approximations have leveraged the advantageous properties of
computations on the hypersphere [65], which has led to dgp models in
which the propagation of posterior predictive means is equivalent to
a forward pass through a deep nn [66, 252]. Notably, as a side effect,
this model effectively provides uncertainty estimates for deep nn
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through its predictive variance. Among the contributions of our thesis
is the further development of this framework, integrating cutting-
edge techniques [223, 230] to address some of its practical limitations,
thereby narrowing the performance gap between gps and deep nns.

Probabilistic models, serving a crucial role as decision support tools,
routinely aid scientific discovery in fields such as physics and as-
tronomy, guiding advancements in areas of medicine and healthcare
encompassing bioinformatics, epidemiology, and medical diagnosis.
Beyond that, these models have wide-ranging applications in eco-
nomics, econometrics, and the social sciences. Moreover, they are
indispensable in various engineering disciplines, such as robotics
and environmental engineering. Among the many probabilistic mod-
els, gps stand out as a powerful driving force behind a number of
important sequential decision-making frameworks, including active
learning [108] and reinforcement learning [55], and the broader area
of probabilistic numerics at large [95]. Notably, Bayesian optimisation
(bo) [20, 75, 228] is one major area that relies heavily on gps and will
feature extensively in our thesis.

Bayesian
optimisationbayesian optimisation. Bayesian optimisation (bo) is a pow-

erful methodology dedicated to the global optimisation of complex
and resource-intensive objective functions. In contrast to classical opti-
misation methods, bo excels even when dealing with functions that
lack strong assumptions or guarantees. These functions may not be
convex, possess no gradients, lack a well-defined mathematical form,
and observable only indirectly through noisy measurements. black-box function

At its core, bo is a sequential decision-making algorithm. It relies sequential
decision-making
algorithm

on observations from past function evaluations to determine the next
candidate location for evaluation in pursuit of optimal solutions. bo

leverages a probabilistic model, often a gp, to represent its knowledge
and beliefs about the unknown function. This model is continuously
updated with the acquisition of each new observation, enabling the
algorithm to adapt its behaviour and make sound decisions based on
the evolving information.

bo effectively manages uncertainty inherent in such sequential
decision-making processes by making use of the probabilistic model
to the fullest, harnessing the entire predictive distribution, particularly,
the predictive uncertainty, to select promising candidate solutions that
bring the most value to the optimisation process. This generally con-
sists not merely of those most likely to optimise the objective function
(i. e., exploiting that which is known), but also those likely to reveal exploitation

the most knowledge and information about the function itself (i. e.,
exploring that which remains unknown). exploration

This pronounced emphasis on well-calibrated uncertainty distin-
guishes bo as one of the standout “killer apps” for gps and a jewel in
the crown of probabilistic ml applications. In practice, bo has proven
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instrumental across science, engineering, and industry, where effi-
ciency and cost-effectiveness are paramount. Its applications include
protein engineering [216, 295], material discovery [227], experimental
physics (e. g., experiments involving ultra-cold atoms [282] and free-
electron lasers [63]), environmental monitoring (sensor placement) [76,
163], and the design of aerodynamic aerofoils [70, 137], integrated
circuits [153, 265], broadband high-efficiency power amplifiers [32],
and fast-charging protocols for lithium-ion batteries [4]. Notably, it
has played a crucial role in automating the hyperparameter tuning ofhyperparameter

optimisation various ml models [236, 270], especially deep learning models, thus
automated machine

learning
representing yet another way in which probabilistic ml has contributed
to the advancement of deep learning.

However, gps are not universally suitable for all bo problem sce-
narios. They are most effective when dealing with smooth, stationary
functions with homoscedastic noise and a relatively modest input di-
mensionality. Additionally, gps are easiest to work with for functions
with a single output and purely continuous inputs. While a surpris-
ingly wide array of real-world challenges satisfy these conditions,
many high-impact problems, such as de novo molecular design, which
involves sequential inputs; neural architecture search (nas), which in-
volves structured inputs with intricate conditional dependencies; and
automotive safety engineering, which involve numerous constraints
and multiple objectives, clearly fall outside of this scope. This is not to
say that gps cannot be extended to such challenging scenarios. How-
ever, such extensions almost always come at a cost. Consequently,
it makes sense to appeal to alternative modelling paradigms more
naturally suited to specific tasks, e. g., employing random forests (rfs)
to handle discrete and structured inputs, or deep nns for capturing
nonstationary behaviour and dealing with multiple objectives. A major
contribution of this thesis is the introduction of a new formulation of
bo that seamlessly accommodates virtually any modelling paradigm,
including deep learning, without any compromise.

1.2 thesis overview

The core contributions of our thesis are summarised as follows:

1. We improve upon the framework for sparse hyperspherical gp ap-
proximations that employ nonlinear activations as inter-domain
inducing features. This framework serves as a bridge between
gps and nns, with posterior predictive mean taking the form of
single-layer feedforward nns. Our thesis examines some prac-
tical issues associated with this approach and proposes an ex-
tension that takes advantage of the orthogonal decoupling of
gps to mitigate these limitations. In particular, we introduce
spherical inter-domain features to construct more flexible data-
dependent basis functions for both the principal and orthogonal
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components of the gp approximation. We demonstrate that in-
corporating orthogonal inducing variables under this framework
not only alleviates these shortcomings but also offers superior
scalability compared to alternative strategies.

2. We provide a probabilistic perspective on cyclegans, a cutting-
edge deep generative model for style transfer and image-to-
image translation. Specifically, we frame the problem of learning
cross-domain correspondences without paired data as Bayesian
inference in a lvm, in which the goal is to uncover the hidden
representations of entities from one domain as entities in an-
other. First, we introduce implicit lvms, which allow flexible
prior specification over latent representations as implicit distri-
butions. Next, we develop a new vi framework that minimises a
symmetrised statistical divergence between the variational and
true joint distributions. Finally, we show that cyclegans emerge
as a closely-related variant of our framework, providing a useful
interpretation as a Bayesian approximation.

3. We introduce a model-agnostic formulation of bo based on
classification. Building on the established links between class-
probability estimation (cpe), density-ratio estimation (dre), and
the improvement-based acquisition functions, we reformulate
the acquisition function as a binary classifier over candidate
solutions. This approach eliminates the need for an explicit
probabilistic model of the objective function and casts aside the
limitations of tractability constraints. As a result, our model-
agnostic bo approach substantially broadens its applicability
across diverse problem scenarios, accommodating flexible and
scalable modelling paradigms such as deep learning without
necessitating approximations or sacrificing expressive and repre-
sentational capacity.

Accordingly, our thesis is organised as follows:

• Chapter 2 lays the necessary groundwork for our thesis. We
begin by outlining the fundamental principles of probability
and Bayesian statistics, which form the basis of probabilistic
ml. Additionally, we introduce the widely-adopted method of
approximate Bayesian inference known as vi. Our discussion
underscores the central role played by statistical divergences,
prompting us to delve into a larger family of divergences and mo-
tivating our discussion of dre. With a solid foundation in place,
we shift our focus to gps, providing an introductory overview
and highlighting the most commonly-used sparse approxima-
tions. Finally, we conclude this background chapter by introduc-
ing the basic concepts behind bo.
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• Chapter 3 examines orthogonally-decoupled sparse gps with
spherical nn activation features, as summarised in 1 above.

• Chapter 4 examines cycle-consistent adversarial networks from
the perspective of approximate Bayesian inference, as sum-
marised in 2 above.

• Chapter 5 examines our model-agnostic approach to bo based
on binary classification and dre, as summarised in 3 above.

• Chapter 6 brings this thesis to a close by reflecting on our main
contributions and situating them in the broader landscape of
probabilistic methods in ml. Finally, we conclude by presenting
our outlook on the avenues for future research and development
in this rapidly evolving field.



2
B A C K G R O U N D

2.1 probabilistic machine learning

Probabilistic models have become pillars of modern ml. They are at
the core of powerful frameworks that can uncover hidden structures,
learn useful representations, and efficiently utilise them to make accu-
rate predictions or generate realistic samples. Through the formalism
of probability theory and Bayesian inference, probabilistic models
provide a coherent framework for systematically reasoning about the
unknown. Such a framework possesses notable advantages: it can
quantify uncertainty in predictions, naturally handle missing data,
and avoid over-fitting to spurious patterns. The probabilistic approach
to ml is deeply embedded in many of its most impactful applications
today.

In a probabilistic model, all quantities are treated as random vari-
ables – the data is treated as observed, or, known, variables, which variables, observed

are assumed to be governed by some underlying hidden, latent, or,
unknown variables. Let D be the set of observed variables and H the variables, latent

set of hidden variables, with the joint density joint density

p(D,H) = p(D |H)p(H).

Notably, the distribution of the observed variables is assumed to
be governed by the hidden variables. In particular, a prior density
p(H) is placed on the hidden variables H, reflecting the beliefs about prior

its plausible values, and to rule out absurd values that should not
be entertained. Its relationship to the observed variables D is then
defined through the likelihood function, or, simply, likelihood, p(D |H).
Note this conditional is sometimes also referred to as the observational likelihood

model. Now, the problem of inference in Bayesian models amounts to observational model

computing the posterior density p(H |D), the conditional probability posterior

of the hidden factors given the observed data. By Bayes’ theorem, Bayes’ theorem

p(H |D) = p(D |H)p(H)

p(D) . (2.1)

The posterior can be seen as a refinement of the prior beliefs in light
of observed data. In the Bayesian learning framework, the posterior
can be updated iteratively as more data or new evidence becomes
available.

To compute the conditional in Equation (2.1) exactly, one must
compute the denominator p(D), often referred to as the model evidence,
It is also known as the marginal likelihood, since it is obtained by evidence

marginal likelihood

9
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marginalising out the hidden variables from the joint density,

p(D) =
∫

p(D |H)p(H)dH. (2.2)

The posterior distribution in Equation (2.1) may be useful in and
of itself, but is most commonly used downstream in a number of
ways, e. g., for decision-making, or as the new prior as additional data
arrives, or to make predictions on unseen data D∗,posterior predictive

p(D∗ | D) =
∫

p(D∗ | H)p(H |D)dH.

Despite its conceptual simplicity, exact Bayesian inference is often
fraught with intractabilities. Specifically, computing the evidence in-
tegral in Equation (2.2) proves to be a frequent source of difficulties
for many model families. This computation can exhibit exponential
time complexity, rendering it computationally intractable. Even withintractability,

computational the advanced hardware available today, an unassuming polynomial
time complexity is still considered computationally intractable when
dealing with sufficiently large datasets. For example, as of the current
writing, algorithms with a cost of O(N3) are typically deemed pro-
hibitively slow when N is on the modest order of thousands [99, 277].
Moreover, in many cases, this integral doesn’t even have a closed-form
expression (e. g., due to non-conjugacy), rendering it analytically in-
tractable. Consequently, the accurate and efficient evaluation of theintractability,

analytical evidence integral stands as a paramount challenge when performing
Bayesian inference for the vast array of complex models that dominate
modern probabilistic ml.

When it is not feasible to carry out exact inference, one must instead
resort to approximate inference techniques. Some dominant formsapproximate

inference of approximate inference include the Laplace approximation [155],
expectation propagation (ep) [173], sampling-based approaches such
as Markov chain Monte Carlo (mcmc) [187], or optimisation-based
approaches such as vi [118, 276]. In this thesis, we shall focus on vi,
which turns out to be a common thread that weaves together a number
of seemingly disaparate research topics.

2.2 variational inference

The basic idea of variational inference (vi) is to cast inference as an
optimisation problem [17]. We first specify a family Q of densities over
the latent variables. Each member q ∈ Q is a candidate approximation
to the exact posterior p(H |D). We then optimise over this family to
find that member that minimises the Kullback–Leibler (kl) divergence
to the exact posterior,Kullback–Leibler

divergence
q∗(H) = arg min

q∈Q
kl [q(H) ∥ p(H |D)] . (2.3)
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Having found the optimal approximate density q∗(H), it can then
be used as a subtitute for the exact posterior density. However, a
difficulty remains – explicitly spelling out the kl divergence in Equa-
tion (2.3) reveals its dependence on p(D), the model evidence from
Equation (2.2),

kl [q(H) ∥ p(H |D)] ≜ Eq(H)

[
log

q(H)

p(H |D)

]
= Eq(H)

[
log

p(D)q(H)

p(D,H)

]

= log p(D) + Eq(H)

[
log

q(H)

p(D,H)

]
(2.4)

However, let’s not forget that the intractability of the evidence is the
raison d’être of approximate inference in the first place. Clearly, directly
minimising the kl is infeasible, prompting the need to consider an
alternative strategy.

2.2.1 Evidence Lower Bound

evidence lower
boundThis brings us to the well-known evidence lower bound (elbo) objec-

tive, which is defined as

elbo(q) ≜ Eq(H)

[
log

p(D,H)

q(H)

]
. (2.5)

Crucially, as the name suggests, the elbo is a lower bound on the
model evidence. In particular, adding elbo(q) to both sides of Equa-
tion (2.4), we get

log p(D) = elbo(q) + kl [q(H) ∥ p(H |D)] .

Hence, the elbo consists of the negative kl divergence and the log
marginal likelihood, which is a constant wrt q(H). Thus seen, max-
imising the elbo is equivalent to minimising the kl divergence in
Equation (2.3). Moreover, since the kl divergence is nonnegative,
kl [· ∥ ·] ≥ 0, it further follows that the elbo is a lower bound on
the log marginal likelihood, log p(D) ≥ elbo(q), for any q ∈ Q. This
bound can also be derived using Jensen’s inequality, as originally
shown by Jordan et al. [118].

We can expand the elbo as

elbo(q) = Eq(H)[log p(D |H)]− kl [q(H) ∥ p(H)] . (2.6)

The first term in Equation (2.6) is commonly referred to as the ex-
pected log-likelihood (ell), while the second term is the negative kl expected

log-likelihoodbetween the approximate posterior q(H) and prior p(H). The ell

term encourages the approximate density to place its mass on config-
urations of the latent variables that explain the observed data, while
the negative kl divergence term encourages densities that resemble
the prior. Combined, these terms constitute the elbo and reflect the



12 background

usual balance between the likelihood and prior – and between data fit
and regularisation.

Under benign conditions, the solution q∗(H) to the optimisation
problem outlined in Equation (2.3) can be derived analytically. An
illustrative example of this is found in gps, a widely used family of
models that we shall formally introduce in Section 2.4. Specifically, in
the sparse gp regression (sgpr) framework discussed in Section 2.4.2.3,
the optimal q∗(H) has a closed-form expression. However, in most
cases, q∗(H) is obtained through a hill-climbing optimisation proce-
dure, specifically, gradient ascent, applied to an analytical form of the
elbo. This approach is employed in the more general sparse varia-
tional gp (svgp) framework, presented in Section 2.4.2.1, where the
likelihood is not (necessarily) Gaussian. If the likelihood factorises,
the use of mini-batch training for stochastic optimisation [105], as
explained in Section 2.4.2.2, allows for scaling to massive datasets.

More generally, in other scenarios, such as vi with blackbox like-
lihoods [209], discrete hidden variables [114, 158], or implicit distri-
butions [110, 267], one or more components of the elbo may lack
analytical tractability and thus necessitate further approximations.
Chapter 3 of this thesis focuses on improving inference in the svgp

framework through the use of nn basis functions, Chapter 4 examines
a new kind of vi scheme designed to handle implicit distributions,
and Appendix A explores the efficient posterior sampling of gps and
their sparse variational approximations.

For a complete resource on the foundations of vi, we refer the inter-
ested reader to the review article of Blei, Kucukelbir, and McAuliffe
[17], now a contemporary classic.

2.3 statistical divergences and density-ratio estima-
tion

Statistical divergences quantify the dissimilarity between probabil-
ity distributions and are essential in probabilistic ml. In the pre-
ceding section on variational inference, we saw a prime example of
one such divergence, namely, the well-known kl divergence. In fact,
the kl divergence is just one of many divergences that belong to a
larger family of statistical divergences known as the f -divergences [48,
146], also known as the Ali-Silvey distances [2]. For a convex, lower-f -divergence

semicontinuous function f : R+ → R satisfying f (1) = 0, the f -
divergence between two distributions with probability densities p(x)
and q(x) is defined as

D f [p(x) ∥ q(x)] ≜ Eq(x)

[
f
(

p(x)
q(x)

)]
. (2.7)
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For instance, the familiar kl divergence that appears extensively in vi

– more precisely, the reverse1
kl divergence kl [q ∥ p] – is obtained as a

special case of Equation (2.7) under the setting f : u 7→ − log u. At the
heart of Equation (2.7) is the fraction, or, ratio,

r(x) ≜
p(x)
q(x)

(2.8)

with density p(x) as the numerator and q(x) as the denominator. This
crucial quantity is referred to as the density-ratio of p(x) and q(x). The density-ratio

density-ratio is known variously in other parts of the literature as the
“likelihood ratio,” or the “importance weight”. Clearly, when either one
or both of the densities are unavailable in analytical form, either due to
intractabilities or intentional modelling choices, the f -divergence from
Equation (2.7) will also be analytically intractable. Perhaps the most
notable case of such intractabilities is in the framework of generative
adversarial networks (gans) [86], in which the underlying goal is to
minimise some f -divergence between two distributions where neither
admits a tractable density, and one must therefore rely solely on their
samples [177, 191].

More broadly, the problem of dre is concerned with approximating
density-ratios when no information is available from distributions p or
q other than their samples. The dre problem is pervasive throughout
ml and arises in a impressively diverse range of contexts, e. g., in co-
variate shift adaptation [15, 250, 268], energy-based models (ebms) [90,
92, 269], vi [110, 172], likelihood-free inference [64, 257, 267], mutual
information estimation [11], bias-correction for generative models [39,
91], and Bayesian experimental design (bed) [129, 130]. Chapter 5 of
this thesis demonstrates how dre arises in the context of bo [241, 259],
a close cousin of bed. Furthermore, as alluded to earlier, Chapter 4

discusses a novel vi approach that relies heavily on dre to deal with
implicit distributions.

The most obvious but naïve approach to tackling the dre problem
is to separately estimate the densities p(x) and q(x) using, e. g., ker-
nel density estimation (kde) [233], and then to use their ratio as an
approximation to the unknown true density-ratio. Not surprisingly,
this approach suffers from a large host of issues, most of which are
well-documented by Sugiyama, Suzuki, and Kanamori [251]. We dis-
cuss these at further length in Chapter 5, with an added emphasis on
the drawbacks that most impact applications in global optimisation.

Not surprisingly, there is a substantial body of existing works on
dre [251]. Recognising the deficiencies of the naïve kde approach,
a myriad alternatives have since been proposed, including kl im-
portance estimation procedure (kliep) [250], kernel mean matching
(kmm) [88], unconstrained least-squares importance fitting (ulsif) [122],
and relative ulsif (rulsif) [292]. In this thesis, we shall primarily focus

1 the kl divergence is asymmetric
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on cpe, introduced in Section 2.3.2, an effective and versatile approach
that has found widespread adoption in a diverse range of contexts
such as those mentioned above.

2.3.1 Variational Divergence Estimation

The problem of estimating statistical divergences and, by extension,
density-ratios, using only samples [188, 191] can be effectively tackled
by leveraging the framework of convex analysis [213]. Convex analysis
is a vast topic in its own right. For a light and intuitive introduction
to convex duality (albeit applied in a different context), the reader is
envouraged to to consult the self-contained section from the text of
Bishop [16, §10.5]. Now, every convex, lower-semicontinuous function
f has a convex dual f ⋆, also known as the Fenchel conjugate [213].convex dual

More precisely, function f and its convex dual f ⋆ are related as follows,Fenchel conjugate

f (u) = max
t
{ut− f ⋆(t)}, f ⋆(t) = max

u
{ut− f (u)}. (2.9)

The convex dual is involutory, meaning that the convex dual of f ⋆

is simply f ⋆⋆ = f . Since f is convex, its first derivative f ′ is strictly
nondecreasing. Therefore, we can reparameterise the variational for-
mulation of f (u) from Equation (2.9) by substituting t with f ′(s) (for
some s in the domain of f ′),

f (u) = max
s

{
u f ′(s)− f ⋆( f ′(s))

}
.

Substituting this into the f -divergence from Equation (2.7) and invok-
ing Jensen’s inequality gives the lower bound

D f [p(x) ∥ q(x)] ≥ max
θ

{
Ep(x)[ f ′(rθ(x))]−Eq(x)[ f ⋆( f ′(rθ(x)))]

}
,

(2.10)
where rθ : X → R+ is some mapping with parameters θ. This is a
powerful bound with far-reaching implications. Firstly, observe that
this lower bound objective does not strictly rely on the densities p(x)
and q(x) – to efficiently maximise this objective in practice, e. g., us-
ing stochastic gradients with the reparameterisation trick, we need
only be able to draw samples from p(x) and q(x). Secondly, some
straightforward calculus of variations shows that the bound is tighest
when rθ(x) = r(x), i. e., when the parameterised mapping is precisely
the density-ratio introduced in Equation (2.8). In other words, opti-
mising the objective in Equation (2.10) to obtain a tight lower bound
directly goes hand-in-hand with obtaining an accurate estimate of the
density-ratio.

2.3.2 Class-Probability Estimation

We’ve just discussed a general framework for simulatenously estimat-
ing divergences and addressing the dre problem. Let’s now consider
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a prominent special case of this known as density-ratio estimation by
class-probability estimation (cpe) [15, 37, 170, 203, 251]. Let πθ be a
probabilistic classifier: a mapping πθ : X → [0, 1] parameterised by θ.
Recall the well-known binary cross-entropy (bce) loss, also known as binary cross-entropy

the log loss, prevalent in binary classification,

L(θ) ≜ −Ep(x)[log πθ(x)]−Eq(x)[log (1− πθ(x))]. (2.11)

Interestingly, there is a lower bound on the bce loss [86] that can be
expressed in terms of an f -divergence, namely, the Jensen-Shannon
(js) divergence Djs [p ∥ q], which is a symmetrised variant of the kl Jensen-Shannon

divergencedivergence,

min
θ
L(θ) ≥ −2 (Djs [p(x) ∥ q(x)]− log 2) .

To see this, let’s first parameterise the classifier as

πθ(x) ≜ σ(log rθ(x)), (2.12)

where σ denotes the logistic sigmoid function and rθ is some function
parameterised by θ. The intermediate (pre-activation) output log rθ(x)
is known as the logits, or log-odds. In the special case of logits, log-odds

fbce(u) ≜ u log u− (u + 1) log (u + 1) (2.13)

in Equation (2.10), we get

2 (Djs [p(x) ∥ q(x)]− log 2) = D fbce
[p(x) ∥ q(x)]

≥ max
θ

{
Ep(x)[log σ(log rθ(x))] + Eq(x)[log (1− σ(log rθ(x)))]

}

= max
θ
{−L(θ)} = −min

θ
L(θ),

and negating both sides gives the desired bound. Like in Equa-
tion (2.10), the bce loss is minimised when rθ(x) = r(x), or equiva-
lently when

πθ(x) = σ(log r(x)) =
p(x)

p(x) + q(x)
,

where r(x) is the true density-ratio defined in Equation (2.8). Impor-
tantly, this provides a straightforward means of recovering a density-
ratio estimator from a probabilistic classifier

rθ(x) = exp σ−1(πθ(x)) =
πθ(x)

1− πθ(x)
,

and vice versa. Thus, we’ve obtained a direct way of casting the
problem of dre as the well-studied problem of cpe. Furthermore, this
general approach is not restricted only to the bce loss but extends
to any other proper scoring rule [85] that produce well-calibrated proper scoring rule

probabilistic predictions, such as the hinge loss [218].
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The cpe approach described here constitutes the predominant ap-
proach to dre. It’s not difficult to imagine why, considering the veri-
table cornucopia of user-friendly, off-the-shelf software frameworks
that are available for supervised learning. Notable examples include
scikit-learn [199] a versatile library covering a wide range of different
paradigms, as well as specialised libraries like XGBoost [34] for deci-
sion tree ensembles with extreme gradient-boosting (xgboost), and
PyTorch [197]/Lightning and TensorFlow [1]/Keras [40] for deep neural
networks (dnns), to name just a few. These frameworks have made it
easier than ever to train powerful classifiers, driving the widespread
adoption of the cpe approach to tackling the problem of dre.

toy 1d example . Consider the following toy example where the
densities ℓ(x) and g(x) are known and given exactly by the following
(mixture of) Gaussians,

ℓ(x) ≜ 0.3N (2, 12) + 0.7N (−3, 0.52), and g(x) ≜ N (0, 22),

as illustrated by the solid red and blue lines in Figure 2.1, respectively.
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Figure 2.1: Densities ℓ(x) and g(x) and their (kernel density) estimates.

We draw a total of N = 1, 000 samples from these distributions,
with a fraction γ = 1/4 drawn from ℓ(x) and the remainder from g(x).
These are represented by the vertical markers along the bottom of the
x-axis (a so-called “rug plot”). Then, two kdes, shown with dashed
lines, are fit on these respective sample sets, with kernel bandwidths
selected according to the “normal reference” rule-of-thumb. We see
that, for both densities, the modes are recovered well, while for ℓ(x),
the variances are overestimated in both of its mixture components. As
we shall see, this has deleterious effects on the resulting density-ratio
estimate.

In Figure 2.2a, we represent the true relative density-ratio with the red
line. Note that the relative density-ratio, as we shall see in Section 5.2.1,
is a generalisation of the ordinary density-ratio we introduced at the
beginning of this section. For the purposes of the present discussion,
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(a) The relative density-ratio, estimated with an mlp classifier.
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(b) The relative density-ratio, estimated
with a rf classifier.
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(c) The relative density-ratio, estimated
with an xgboost classifier.

Figure 2.2: Synthetic toy example with (mixtures of) Gaussians.

its precise definition is immaterial as the same analysis applies both
to relative and ordinary density-ratios. The estimate resulting from
taking the ratio of the kdes is shown in blue, while that of the cpe

method described in this section is shown in green. In this subfigure,
the probabilistic classifier consists of a simple mlp with 3 hidden
layers, each with and 32 units and elu activations. In Figures 2.2b
and 2.2c, we show the same, but with rf and xgboost classifiers.

The cpe methods appear, at least visually, to recover the exact
density ratios well, whereas the kde method does so quite poorly.
Perhaps the more important quality to focus on, particularly if used
in the context of global optimisation as in Chapter 5, is the mode of the
density-ratio functions. In the case of the kde method, we can see that
this deviates significantly from that of the true density-ratio. In this
instance, although kde fit g(x) well and recovered the modes of ℓ(x)
accurately, even a slight overestimation of the variance in the latter
led to a significant shift in the maximiser of the resulting density-ratio
functions.
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2.4 gaussian processes

We now shift gears and turn our focus to Gaussian processes (gps), a
class of nonparametric Bayesian models that provide a powerful frame-
work for reasoning about unknown functions. gps are ubiquitous in
probabilistic ml [156]. They exhibit remarkable data efficiency, achiev-
ing high accuracy even with limited data. Moreoever, they inherently
possess mechanisms that help to mitigate over-fitting, and can flexibly
encode prior beliefs and assumptions through their covariance func-
tion. Last but not least, by virtue of their ability to faithfully capture
predictive uncertainty, they form the backbone of many sequential
decision-making procedures that require reliable uncertainty estimates
to appropriately balance important trade-offs such as that of exploration
and exploitation, for instance, in active learning [108], reinforcement
learning [55], Bayesian optimisation [20, 75, 228] (covered in-depth
separately in Section 2.5), probabilistic numerics [95], and more.

2.4.1 Gaussian Process Regression

More formally, gps are a flexible class of distributions over functions. A
random function f : X → R on some domain X ⊆ RD is distributed
according to a gp if, at any finite collection of input locations X∗ ⊆ X ,
its values f∗ = f (X∗) follow a Gaussian distribution. A gp is fully
determined by its covariance function k(x, x′) and mean function,covariance function

which can be assumed without loss of generality to be constant (e. g.,
zero).

Consider a supervised learning problem in which we have a dataset
{xn, yn}N

n=1 consisting of scalar outputs yn, which are related to fn ≜
f (xn), the value of some unknown function f (·) at input xn ∈ X ,
through the likelihood p(yn | fn). A powerful modelling approach
consists of specifying a gp prior on the latent function f (·),

f (x) ∼ GP
(
0, k(x, x′)

)
. (2.14)

Let X denote the inputs, f the corresponding latent function values,
and y the outputs. In the regression setting, the outputs y are assumed
to be noisy observations of the latent values f, typically related through
a Gaussian likelihood

p(y | f, β) = N (y | f, β−1I), (2.15)

for some precision β > 0.precision

Under this likelihood, the posterior predictive density p(f∗ | y) at
test inputs is has the closed-form expression

p(f∗ | y) = N
(

K∗f(Kff + β−1I)−1y, K∗∗ −K∗f(Kff + β−1I)−1Kf∗
)

.
(2.16)
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Figure 2.3: Gaussian process (gp) posterior predictive density on the synthetic
one-dimensional snelson1d dataset [235]; three random functions
sampled from this density are indicated by the blue curves.

Clearly, evaluating this density has a time complexity of O(N3), which
stems from the costs associated with calculating the matrix inverse of
Kff + β−1I. Furthermore, for other (i. e., non-Gaussian) likelihoods the
closed-form expression for p(f∗ | y) is generally unavailable.

2.4.1.1 Covariance Functions

The covariance function holds a pivotal role in gp models, as it en-
capsulates prior beliefs and assumptions about the latent function of
interest. It provides a means to encode various characteristics such
as periodicity, roughness, and smoothness (or, to be more precise,
orders of differentiability), etc. Specifically, let us examine the family of
stationary covariance functions, which are translation invariant in the stationarity

input space. In other words, kθ(x, x′) only depends on the difference
x − x′ between the input locations x and x′. This can be expressed
mathematically as

kθ(x, x′) = κθ(x− x′),

for some function κθ, where θ consists of some collection of parameters.
The use of a stationary covariance function reflects the assumption
that the relationship between f (x) and f (x′) is fully characterised by
the difference between x and x′. In particular, consider the squared
exponential (se) kernel, or, the exponentiated quadratic kernel, which squared exponential

kernelcan be expressed in terms of function κθ of the difference t ≜ x− x′,

κθ(t) = σ2
f exp

(
− t2

2ℓ2

)
, (2.17)

where the parameters θ ≜ {ℓ, σ2
f } are made up of the characteris-

tic lengthscale ℓ and the variance, or, amplitude, σ2
f . Generalising the characteristic

lengthscale

amplitude
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Figure 2.4: Several widely-used stationary covariance functions.

squared exponential (se) kernel to D dimensions, we have

κθ(t) = σ2
f exp

(
−1

2
t⊤Λ−1t

)
, (2.18)

for some nonsingular matrix Λ. The most common and arguably
useful choice for Λ is the diagonal matrix,

Λ ≜ diag(ℓ2
1, . . . , ℓ2

D),

consisting of the characteristic lengthscales ℓ1, . . . , ℓD, each associated
with an input dimension. Intuitively, each lengthscale dictates how
close the input location needs to be (along the associated dimension)
for the function values to exhibit high correlation. This effectively
implements the functionality known as automatic relevance determi-
nation (ard) [185], because the relevance of an input dimension isautomatic relevance

determination inversely proportional to the corresponding lengthscale – that is, an
input dimension with a large associated lengthscale will have virtually
no influence on the covariance, effectively disregarding its variations
during inference [286]. The se covariance function is infinitely differ-
entiable, implying that the latent function f (x) will have derivatives
of all orders. However, assuming such a degree of smoothness is often
unreasonable for many applications. For this reason, many practition-
ers appeal to the Matérn family of covariance functions [247], whichMatérn kernel

were originally named after Matérn [164]. This family of functions
offers greater flexibility in modelling various degrees of smoothness,
which can be adjusted by specifying a smoothness parameter ν.
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Figure 2.5: Gaussian process (gp) prior samples resulting from different sta-
tionary covariance functions with characteristic lengthscale ℓ =
5/4; three random samples are drawn for each covariance func-
tion.

Specifically, in the case when ν is half-integer, i. e., ν = ρ + 1/2 for
some nonnegative integer ρ, the Matérn-ν covariance function can be
expressed as

κ
(ν)
θ (t) =σ2

f exp
(
−
√

2νt⊤M−1t
) Γ(ρ + 1)

Γ(2ρ + 1)

×
ρ

∑
i=0

(ρ + i)!
i!(ρ− i)!

(√
8νt⊤M−1t

)ρ−i
.

(2.19)

There are a few properties worth noting here. First, the latent function
f (x) will have derivatives up to order ρ. This is consistent with the
fact that we obtain the se kernel in the limit as ν → ∞. The most
interesting cases are ν = 1/2, 3/2, 5/2, with the last perhaps being the
most widely-used in practice. The choice of ν = 5/2 signifies a prior
belief that the latent function f (x) is twice differentiable (since ρ = 2),
which has been advocated as a helpful assumption, e. g., in the context
of global optimisation [236].

2.4.1.2 Hyperparameter Estimation

We’ve already discussed how to obtain the posterior predictive density
at test inputs for a given set of hyperparameters, such as {θ, β} for
noise precision β and kernel parameters θ. As one can imagine from
our earlier discussions, these hyperparameters exert a large influence
on the behaviour of the gp and its predictions. However, determining
the appropriate values for these hyperparameters is often challenging
and impractical to do manually. In most cases, when the ideal fully-
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Figure 2.6: Gaussian process (gp) prior samples resulting from different sta-
tionary covariance functions with varying lengthscales; one sam-
ple is drawn for each combination.

Bayesian treatment of these hyperparemeters proves too unwieldy,
it is common practice to adopt a configuration that maximises the
marginal likelihood, known as type-ii maximum likelihood estimation
(mle). In the regression setting we have been discussing, the marginal
likelihood has the closed-form expression

log p(y | θ, β) = log
∫

p(y | f, β)p(f | θ)df = logN (y | 0, Kff + β−1I)

= −1
2

y⊤(Kff + β−1I)−1y− 1
2

log|Kff + β−1I| − N
2

log 2π. (2.20)

The first term is a quadratic in the observations y, which encourages
a precise fit to the data. On the other hand, the second term acts a
regulariser that discourages overly complex models. Consequently,
optimising the hyperparameters wrt to the marginal likelihood au-
tomatically strikes a balance between data fit and model complexity,
ultimately seeking the simplest model that best explains the data. It is
due to this mechanism that gp models are often characterised as being
inherently robust against over-fitting. However, it is important to note
that the ability to mitigate over-fitting is more accurately attributed to
the marginal likelihood, which is essentially what distinguishes the
Bayesian inference approach from other approaches based purely on
optimisation [286, §5.2].

As with the predictive density in Equation (2.16), the time complex-
ity of evaluating the marginal likelihood is dominated by the O(N3)

cost of computing the matrix inverse and determinant. Furthermore,
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Figure 2.7: Hyperparameter estimation in a gp regression model and its ef-
fects; the two ‘+’ markers correspond to optimal and reasonably-
good-but-not-quite-optimal settings of the hyperparameters (ℓ, β).
The resulting posterior predictive densities, visualised in Fig-
ures 2.3 and 2.7b, respectively, reveal a clear contrast in predictive
uncertainty, with the optimal hyperparameters delivering finely
tuned confidence intervals.

apart from the case of the gp regression model with Gaussian noise
from Equation (2.15), which serves as an exception that proves the
rule, the marginal likelihood is generally analytically intractable for
arguably the majority of interesting models in probabilistic ml. These
two intractabilities have long been recognised as the most significant
challenges in establishing the practicality and widespread adoption of
gps.

2.4.2 Sparse Gaussian Processes

A range of sparse gp methods have been developed over the years sparse Gaussian
processto mitigate these limitations [46, 204, 226, 234]. Broadly speaking,

in sparse gps, one summarises f (·) succinctly in terms of inducing
variables, which are values u ≜ f (Z) taken at a collection of M locations
Z = [z1 · · · zM]⊤, where zm ∈ X . Not least among these approaches
is svgp/sgpr, first proposed by [262], which casts sparse gps within
the framework of vi, which we described earlier in Section 2.2. In this
section, we examine this framework in detail and discuss some of
the extensions for blackbox likelihoods and large-scale inference with
mini-batch training [57, 98, 99].

Specifically, the joint distribution of the model augmented by induc-
ing variables u is p(f, u, y) = p(y | f)p(f, u), where the joint over (f, u)
factorises as p(f, u) = p(f | u)p(u). The prior p(u) is

p(u) = N (0, Kuu), (2.21)
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and the conditional p(f | u) is

p(f | u) = N (f |Qfuu, Kff −Qff), (2.22)

where Qff ≜ QfuKuuQuf and Qfu ≜ KfuK−1
uu . The joint variational

distribution is defined as q(f, u) ≜ q(f | u)q(u) where

q(u) ≜ N (mu, Cu) (2.23)

for variational parameters mu ∈ RM and Cu ∈ RM×M s. t. Cu ⪰ 0.
Commonly, for convenience, one simply defines q(f | u) ≜ p(f | u). At
unseen points f∗ ≜ f (X∗), integrating out u leads to the test predictive
density

q(f∗) = N (f∗ |Q∗umu, K∗∗ −Q∗u(Kuu − Cu)Qu∗) , (2.24)

where parameters mu and Cu are learned by minimising the kl diver-
gence between the approximate and exact posteriors, kl [q(f∗, f, u) ∥ p(f∗, f, u | y)].
Conveniently, since the posteriors factorise as

q(f∗, f, u) = p(f∗ | f, u)q(f, u),

and
p(f∗, f, u | y) = p(f∗ | f, u,Sy)p(f, u | y),

the common factor p(f∗ | f, u) cancels each other to simplify the kl,

kl [q(f∗, f, u) ∥ p(f∗, f, u | y)] = kl [q(f, u) ∥ p(f, u | y)] .

Refer to Section 2.A for details. Now, by Bayes’ rule, we have

kl [q(f, u) ∥ p(f, u | y)] (2.25)

=
∫∫

q(f, u) log
q(f, u)

p(f, u | y) dfdu

= log p(y)−
∫∫

q(f, u) log
p(f, u, y)
q(f, u)

dfdu. (2.26)

The astute reader might find this familiar, as it an instance of the
general expression we examined in Section 2.2. Indeed, if we define
the elbo as

elbo(q) ≜
∫∫

q(f, u) log
p(f, u, y)
q(f, u)

dfdu,

then, upon re-arranging Equation (2.26), we get

log p(y) = elbo(q) + kl [q(f, u) ∥ p(f, u | y)] .

Now, since p(f, u, y) factorises as

p(f, u, y) = p(y | f,Zu)p(f, u) = p(y | f)p(f | u)p(u),



2.4 gaussian processes 25

we can simplify the elbo to

elbo(q) =
∫∫

p(f | u)q(u) log
p(y | f)XXXXp(f | u)p(u)

XXXXp(f | u)q(u) dfdu

=
∫

q(u) log
F(y, u)p(u)

q(u)
du, (2.27)

where we have defined

F(y, u) ≜ exp
(∫

p(f | u) log p(y | f)df
)

. (2.28)

We can re-arrange the elbo of Equation (2.27) into the usual composi-
tion made up of ell and kl divergence terms,

elbo(q) =
∫

q(u) log F(y, u)du− kl [q(u) ∥ p(u)] . (2.29)

Interestingly, log [F(y, u)] is a lower bound on the log conditional
probability log p(y | u) – quite simply, by Jensen’s inequality, we have

log p(y | u) = log Ep(f | u)[p(y | f)]
≥ Ep(f | u)[log p(y | f)] = log F(y, u).

Refer to the manuscript of Hensman, Matthews, and Ghahramani [99,
Equation 1] for a discussion of the role that this “intermediate” lower
bound plays in various contexts.

It is worth mentioning that there are some nuanced technical con-
cerns over whether maximising the elbo in Equation (2.29) truly
minimises the kl divergence between the prior and posterior stochas-
tic processes. We shall not delve further into this issue here except to
note that these were largely resolved by Matthews et al. [165].

optimal variational distribution. From the elbo as ex-
pressed in Equation (2.27), it’s evident that the maximising variational
distribution takes the form q∗(u) ∝ F(y, u)p(u),

q∗(u) =
F(y, u)p(u)∫

F(y, u)p(u)du
. (2.30)

This can also be verified through the use of calculus of variations, as
shown in Section 2.B, or by applying Jensen’s inequality, but in the
opposite direction.

collapsed lower bound. If we now substitute q∗ back into the
elbo, we get the so-called collapsed lower bound,

elbo(q∗) = log
(∫

p(u)F(y, u)du
)

. (2.31)

This bound is “collapsed” in the sense that it is no longer a function
of q (it is already optimal wrt q) but implicitly remains a function
of other (hyper)parameters such as the kernel parameters θ and the
inducing input locations Z.
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2.4.2.1 General Likelihoods

When we make no assumptions about the explicit form of the like-
lihood p(y | f) nor of its structure or behaviour, it is characterised
as “black-box”. The integral that constitutes the ell term in Equa-black-box likelihood

tion (2.29) is generally intractable for black-box likelihoods. However,
if we marginalise out u to rewrite the ell as

∫
q(u) log F(y, u)du =

∫ (∫
q(u)p(f | u)du

)
log p(y | f)df

=
∫

q(f) log p(y | f)df,

we can approximate it efficiently using numerical integration methods
such as Monte Carlo (mc) estimation or quadrature rules, by virtue
of the fact that the marginal q(f) is available in the analytical form of
Equation (2.24) and can thus be sampled easily,

∫
q(f) log p(y | f)df ≈ 1

S

S

∑
s=1

log p(y | f(s)), f(s) ∼ q(f)

Moreover, because q(f) is Gaussian, we can utilise simple and effective
rules like Gauss-Hermite quadrature, described further in Appendix A
for a different application.

2.4.2.2 Factorised Likelihoods (for Scalability)

Further, suppose the likelihood factorises, i. e., the observations de-
pend point-wise on the latent functions,

p(y | f) =
N

∏
n=1

p(yn | fn),

we then have
∫

q(f) log p(y | f)df =
N

∑
n=1

∫
q( fn) log p(yn | fn)d fn.

Therefore, the elbo can be written as

elbo(q) =
N

∑
n=1

Eq( fn)[log p(yn | fn)]− kl [q(u) ∥ p(u)] .

Importantly, it’s clear that this objective is amenable to mini-batch
training for stochastic optimisation [98].

2.4.2.3 Gaussian Likelihood (for Regression)

Now suppose the problem at hand is regression, for which the likeli-
hood of choice is typically the Gaussian from Equation (2.15). We can
show that

F(y, u) = N (y |Qfuu, β−1I)× exp
(
−β

2
tr(Kff −Qff)

)
. (2.32)



2.4 gaussian processes 27

Refer to Section 2.C for detailed derivations. This framework, first
studied in the landmark paper by Titsias [262], is often referred to as
sparse gp regression (sgpr).

optimal variational distribution. Since the likelihood is
Gaussian, by Equation (2.32), the maximiser of the elbo in Equa-
tion (2.30) is the product of two exponentiated-quadratic functions of
u. When normalised, this becomes

q∗(u) = N (u | βKuuM−1Kufy, KuuM−1Kuu), (2.33)

where M ≜ Kuu + βKfuKuf. Refer to Section 2.D for details.

collapsed lower bound. The optimal lower bound wrt q from
Equation (2.31) now becomes

elbo(q∗) = logN (y | 0, Qff + β−1I)− β

2
tr(Kff −Qff).

Refer to Section 2.E for further details. It’s instructive at this point to
compare this with the log marginal likelihood log p(y) of the exact gp

regression setting from Equation (2.20). We readily see that log p(y) =
elbo(q∗) when Qff = Kff. Furthermore, evaluating log p(y) has a
computational complexity of O(N3), whereas calculating the elbo has
a complexity of O(NM2 + M3).

test predictive distribution. Finally, we can obtain the poste-
rior predictive density at test inputs X∗ by substituting the mean and
covariance from Equation (2.33) into mu and Cu from Equation (2.24),

q(f∗) = N
(

f∗ | βK∗uM−1Kufy, K∗∗ −K∗u(K−1
uu −M−1)Ku∗

)
. (2.34)

All told, we see that sgpr has time complexity O(M3) at prediction
time and O(NM2 + M3) during training, with a space complexity of
O(NM + M2), which offers a substantial speedup over exact inference
when M≪ N.

Finding a comprehensive, self-contained resource that provides
derivations of the equations summarised in this section is surprisingly
difficult. Consequently, the pieces necessary to construct the contents
of this section and its derivations are collected variously from the
unpublished technical report of Titsias [263], the technical notes of
Bui and Turner, the paper of Hensman, Matthews, and Ghahramani
[99], as well as the PhD theses of Bui [23], Matthews [168], and Van
der Wilk [272].

For the newcomer to Bayesian statistics, it is instructive to derive
these independently, as they invoke nearly all the essential tools of the
trade, such as identities relating to conditioning, marginalisation, and
affine transformations of Gaussians, the Woodbury matrix identity,
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Jensen’s inequality, calculus of variations, “completing the square”,
including less standard ones such as the “inner-product as outer-
product-trace” identity. We reiterate only a few of these here, as most
can be found in the well-known texts of Deisenroth, Faisal, and Ong
[56, p. MML], Murphy [181, MLaPP], Bishop [16, PRML], and Williams
and Rasmussen [286, GPML].

Deriving the quantities from this section not only provides an ideal
exercise regimen for hands-on practice with these vital tools, taking
the journey from exact gp regression to sgpr, svgp, and its stochastic
variant offers a prime example of a model family that effectively spans
the spectrum of exactness and approximation often present in Bayesian
modelling and vi that we previously alluded to in Section 2.2. This
progression leads us from an exact posterior to an closed-form optimal
variational posterior, followed by a variational posterior optimised wrt
an exact deterministic elbo and, ultimately, to one optimised wrt a
stochastic elbo.

In this section, we have examined sparse gps through the lens of
vi. This framework, which we and others have referred to as svgp,
also goes by the name of the variational free energy (vfe) framework,
owing to the elbo’s interpretation from the perspective of statisti-
cal thermodynamics. The framework known as stochastic variational
gp [98] shares the same acronym as svgp, but specifically pertains to
the scalable mini-batch variant of the vfe framework. Other promi-
nent sparse gp methods, such as the deterministic training conditional
(dtc) [226] and the fully independent training conditional (fitc) [234],
are beyond the scope of this thesis. Nonetheless, the topic of their
connection to vfe is fascinating, and we direct the interested reader
to the manuscript by Bui, Yan, and Turner [22] and the thesis of Bui
[23] for a unifying framework under the umbrella of ep. For further in-
sights and practical implications of their connections, we recommend
the manuscript by Bauer, Wilk, and Rasmussen [9] and the thesis of
Van der Wilk [272].

2.4.3 Random Fourier Features

In the previous section, we examined a kind of gp approximation
that effectively approximates the gp posterior predictive density. Now
let’s examine a different approximation – one that approximates the
covariance function itself, and, therefore, the prior.

Consider the Bayesian linear regression (blr) model with weightsBayesian linear
model w ∈ RL,

f (x) =
L

∑
i=1

wiϕi(x) = ϕ⊤(x)w, (2.35)

for some set of L basis functions, or, features, ϕ(x) = [ϕ1(x) . . . ϕL(x)]⊤ ∈basis functions

RL. As before, in Equation (2.15), the observed targets y are assumed
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to be function values corrupted by additive noise ε, which are further
assumed to be iid Gaussian with zero mean and precision β > 0,

y = f (x) + ε, ε ∼ N (0, β−1). (2.36)

This implies the likelihood p(y |w) = N (y |Φw, β−1I), where Φ ≜
ϕ(X) ∈ RN×L. Suppose we have a Gaussian prior over the weights
p(w) = N (w | 0, Σw). When f is evaluated at a finite collection of
T locations X∗, the vector f∗ = f (X∗) ∈ RT follows the Gaussian
distribution N (f∗ | 0, Φ∗ΣwΦ⊤∗ ) where Φ∗ ≜ ϕ(X∗) ∈ RT×L. In other
words f is by definition a gp with the covariance function k(x, x′) =
ϕ(x)⊤Σwϕ(x′). This is known as the weight-space perspective of weight-space

approximation
gps [286]. Sampling random functions f (·) from the prior amounts
to sampling w ∼ N (0, Σw). Therefore, if Σw is diagonal, as is often
the case in practice, f (·) can be sampled cheaply at a cost of O(L).
Additionally, for a given realisation of w, the corresponding sample
f (x) is a deterministic function – importantly, one that is differentiable
wrt x. Consequently, the weight-space approximation is relied upon
in Thompson sampling [258] to address sequential decision-making
problems that require balancing exploration and exploitation, as we
will discuss further in Section 2.5.2.4.

Now, the posterior weight density is

p(w | y) = N
(

β(Σ−1
w + βΦ⊤Φ)−1Φ⊤y, (Σ−1

w + βΦ⊤Φ)−1
)

(2.37)

Assuming Σw = I, the covariance function is becomes k(x, x′) =

ϕ(x)⊤ϕ(x′) and the posterior density simplifies to

p(w | y) = N
(
(Φ⊤Φ + β−1I)−1Φ⊤y, β−1(Φ⊤Φ + β−1I)−1

)
.

Thus seen, the computational complexity of evaluating this density
is dominated by the cost associated with inverting the matrix Φ⊤Φ +

β−1I. Through judicious application of the Woodbury matrix identity,
this cost is O(min{L, N}3).

Now, by the kernel trick, a kernel k can be seen as an inner product in kernel trick

a reproducing kernel Hilbert space (rkhs) H equipped with a feature
map φ : X → H. For separable H, we can approximate this inner
product as

k(x, x′) = ⟨φ(x), φ(x′)⟩H ≈ ϕ(x)⊤ϕ(x′), (2.38)

for some finite-dimensional feature map ϕ : X → RL. In particular,
let us focus on the stationary covariance functions, which possess
properties that can be leveraged to construct efficient approxima-
tions. Extensions beyond stationary covariance functions are possible
through the application of Mercer’s theorem and the Karhunen–Loève
expansion [30, 73]. In Chapter 3, we discuss an example of this in the
spherical harmonics for zonal covariance functions.
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Figure 2.8: Spectral densities of the stationary covariance functions from Sec-
tion 2.4.1.1.
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Table 2.1: Fourier transform pairs of stationary covariance function κ(t)
and their spectral density p(ω), with t ≜ x − x′ and M ≜
diag(ℓ2

1, . . . , ℓ2
D).

Theorem 2.4.1 (Bochner’s theorem). A continuous, translation invariant
kernel k(x, x′) = κ(x− x′) is positive definite if and only if it is the Fourier
transform of a nonnegative, finite measure µ,

κ(x− x′) =
∫

e−iω⊤(x−x′) dµ(ω).

If measure µ has a density p(ω), it is referred to as the spectral density,
or, power spectrum, associated with kernel k. We have the followingspectral density

Fourier transform pair,

κ(t) =
∫

p(ω)e−iω⊤t dω, and p(ω) =
1

2π

∫
κ(t)eiω⊤t dt.

(2.39)
For example, for the 1D se kernel from Equation (2.17), we can calcu-
late its corresponding spectral density using Equation (2.39) to obtain

p(ω) = N
(
ω | 0, ℓ−2) . (2.40)

Refer to Section 2.F for details. More generally, for the D-dimensional
se kernel from Equation (2.18), we have

p(ω) = N
(

0, M−1
)

,
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and, for the Matérn-ν kernel from Equation (2.19), we have

p(ω) = t2ν

(
0, M−1

)
,

where t2ν denotes the Student’s t-distribution with 2ν degrees of
freedom. See Table 2.1 for a summary of popular stationary kernels
and their spectral densities. Now, assuming p(ω) is even symmetric,
κ(t) from Equation (2.39) is real-valued and simplifies further to the
Fourier cosine transform,

κ(x− x′) =
∫

p(ω) cos (ω⊤(x− x′))dω

= Ep(ω)[cos (ω⊤(x− x′))]. (2.41)

Let ψω : RD → R2 denote the projection in some random direction
ω ∼ p(ω), mapped to the unit circle,

ψω(x) ≜

[
cos ω⊤x

sin ω⊤x

]
. (2.42)

Using elementary trigonometric identities, we can show that the inner
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Figure 2.9: A example random Fourier features (rff) decomposition of the
se covariance function with characteristic lengthscale ℓ = 5/4.
The exact values of the covariance function are indicated by the
dashed black line.

product of ψω evaluated at inputs x and x′ is

ψω(x)⊤ψω(x′) = cos (ω⊤(x− x′)). (2.43)

Refer to Section 2.G for details. Finally, by Equation (2.41), we recover
the kernel k by taking the expectation of Equation (2.43) on both sides,

Ep(ω)[ψω(x)⊤ψω(x′)] = Ep(ω)[cos (ω⊤(x− x′))] (2.44)

= k(x, x′).
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This shows that the inner product of Equation (2.43) is an unbiased
estimator of k(x, x′). In other words, evaluating the kernel amounts
to computing the expectation in the lhs of Equation (2.44). Hence,
in order to approximate the kernel, we can leverage techniques of
numerical integration [51] to construct a set of basis functions, or,
features, ϕ : X → RL, such that

ϕ(x)⊤ϕ(x′) =
L

∑
i=1

ϕi(x)⊤ϕi(x′) ≈ Ep(ω)[ψω(x)⊤ψω(x′)] = k(x, x′).

We refer to this as the Fourier feature decomposition. Perhaps the mostFourier feature
decomposition well-known example of this is the (award-winning) random Fourier

features (rff) decomposition of Rahimi and Recht [206], in which
ϕi : x 7→

√
2/L cos(ω(i) · x + b(i)) for ω(i) ∼ p(ω) and b(i) ∼ U [0, 2π].

This feature decomposition is based on the relatively straightforward
application of mc estimation in combination with a few trigonometric
identities.

In Appendix A, we provide a detailed derivation of the random
Fourier features (rff) decomposition, in addition to alternative feature
decompositions based on various numerical integration schemes. For
further details on the weight-space approximation and generalisations
beyond stationary covariance functions, the interested reader may refer
to the manuscript of Wilson et al. [291] upon which our treatment of
this topic is based.

2.5 bayesian optimisation

Bayesian optimisation (bo) is a powerful framework for efficiently lo-
cating the global optima of expensive black-box functions [20, 75, 228].
It can be seen as a sequential algorithm for decision-making amidst
the uncertainties inherent in the problem of global optimisation.

Formally, for a real-valued blackbox function f : X → R, the goal
of global optimisation is to locate an input x ∈ X at which it isglobal optimisation

minimised,
x∗ = arg min

x∈X
f (x).

Throughout our presentation, we shall focus on the minimisation prob-
lem without loss of generality, as any maximisation problem can be
translated into a minimisation problem, and vice versa, simply by
negating the function of interest. In contrast with classical mathemati-
cal optimisation, which frequently rely upon a number of simplifying
assumptions, bo is particularly well-equipped to address problems
with the following general properties:

opaque . The functions are largely inscrutable, lacking a well-
defined functional form or useful closed-form expression (hence,
characterised as “black boxes”). Additionally, these functions do not
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Algorithm 1: A generic sequential decision-making procedure
for optimisation.
Input: blackbox function f : X → R, initial dataset D0.
repeat

xN ← policy(DN−1) // suggest next candidate location

yN ← evaluate(xN) // evaluate f at the suggested location

DN ← DN−1 ∪ {(xN , yN)} // update dataset

N ← N + 1
until termination condition satisfied

provide helpful “hints” or “clues” typically exploited by traditional
optimisation methods, such as first-order gradients, let alone higher-
order derivatives. Lastly, the function is assumed to be nonconvex,
which is to say that a local optimum is not automatically considered a
globally optimal solution.

expensive . The functions are assumed to be costly to evaluate.
Since evaluations require substantial resources like time and money,
the function cannot be trivially optimised by exhaustive evaluation.

imprecise . The mechanism by which the function is evaluated is
assumed to be imperfect, involving randomness, low-fidelity simula-
tion, or indirect observations through noisy measurements.

Simply stated, bo only requires a way to obtain noisy observations
of an objective function at suggested locations. It should go without
saying that these characteristics are not preconditions for bo, but rather
represent the complex problem scenarios where bo demonstrates its
strength and versatility.

Every optimisation procedure boils down to making a series of deci-
sions. In each iteration, we are tasked with deciding which candidate sequential

decision-makinglocation is the most promising to evaluate next. These decisions must
be made in the face of uncertainty, as we cannot know the outcome of
an evaluation beforehand, even with access to past observations. Fur-
ther, the sequential nature of the optimisation process exacerbates the
impact of this uncertainty. Any sound optimisation framework must
be equipped manage this uncertainty. In light of these considerations,
it is helpful to approach bo from the perspective of Bayesian decision
theory [12, 54], which views it as a principled framework that provides Bayesian decision

theorya systematic approach to decision-making under uncertainty tailored
for global optimisation. Thus, our remaining treatment of this topic
will follow the decision-theoretic introduction provided by Garnett
[75].

The procedure in Algorithm 1 formalises a generic approach to
global optimisation. The procedure is initialised with a dataset D0,
which typically consists of a small handful of existing observations
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made at randomly-selected locations. For notational simplicity, sup-
pose D0 = ∅. Then, in iteration N, the dataset consists of past observa-
tions DN = {xn, yn}N

n=1, where yn = f (xn) + ε for some additive noise
ε. In other words, output yn is the (inexact) function value at input xn,
assumed to be corrupted by some noise, typically Gaussian distributed
ε ∼ N (0, β−1), with some precision β > 0. This effectively leads
to the observation model previously introduced in Equations (2.15)
and (2.36).

Now, the observed dataset DN (which can be viewed as the state) isstate

mapped, through an optimisation policy, to the candidate location x tooptimisation policy

be evaluated next (which can be viewed as an action). This location xaction
is in turn mapped, through evaluation of the blackbox function, to a
corresponding value y (which can be viewed as the outcome). Finally,outcome

the state is updated by appending the new observation (x, y) to the
dataset, and the process is repeated until the termination criteria are
met.

The optimisation policy varies along two principal axes. They are
either: (1) deterministic or stochastic, and (2) adaptive or non-adaptive.
Non-adaptive policies disregard the data, exemplified by methods
such as grid search and random search [13], which are in turn repre-
sentative of deterministic and stochastic policies, respectively. On the
other hand, bo methods are driven by adaptive optimisation policies
that leverage past data to make informed future decisions.

Accordingly, a hallmark of bo methods is that they maintain a prob-
abilistic model known as the surrogate model, which encapsulates oursurrogate model

knowledge and beliefs about the unknown function. These beliefs are
continuously updated as new data is acquired, allowing the algorithm
to adapt its behaviour to make optimal decisions based on the evolv-
ing information. In addition to the surrogate model, often a utility
function U(y) is specified to encode our preferences for the kinds of ob-utility function

servations that are considered useful. These preferences are connected
to the posterior beliefs, through the surrogate model’s posterior pre-
dictive density p(y | x,DN), to form the acquisition function α(x;DN),
which serves as a criterion or score for candidate locations, indicat-acquisition function

ing the benefit they bring to the optimisation procedure. Ultimately,
the optimisation policy produces the maximiser of the acquisition
function,

policy : DN 7→ arg max
x∈X

α(x;DN).

The reason that this approach works at all (namely, optimising a func-
tion by optimising yet another function) is that the acquisition function
is designed to be more manageable than the unknown function f (x).
Specifically, the acquisition function is usually relatively inexpensive
to evaluate, possesses closed-form expressions, and offers analytically
tractable gradients. As a result, they can be optimised efficiently using
conventional, readily available mathematical optimisation methods.
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All acquisition functions try to negotiate between the opposing
forces of exploration and exploitation. In the context of optimisation,
exploitation is the tendency to favour locations where the function
value is expected to be low (assuming the goal is minimisation),
while exploration is the tendency to favour locations where there is
a high degree of uncertainty concerning the function value, enabling
the acquisition of more data to improve the model and make more
informed decisions in the future. The key to an effective optimisation
approach lies in striking a balance within the acquisition function,
ensuring that neither force overpowers the other.

In the remainder of this section, we provide an overview of the key
components we have introduced, namely, the surrogate model and
acquisition function. In particular, we examine the main considerations
for their design and discuss several proven approaches.

Before moving on, a quick word on notation: throughout the earlier
chapters we have used p( f∗ | y) to denote the posterior predictive
density. This is itself a shorthand for p( f∗ | x∗, X, y), which, considering
that DN is another way to denote (X, y), is not too dissimilar to the
p(y | x,DN) notation used here. In the present context, the asterisks are
no longer required for the purpose of distinguishing unseen test points
as the observations are instead disambiguated by indexed subscripts
(i. e., xn, yn).

2.5.1 Surrogate Models

From the high-level description of bo we have presented above, it
shouldn’t be difficult to appreciate the importance of having a consis-
tent framework for systematically reasoning about unknown functions.
Therefore, it is not surprising that gps have emerged as the predomi-
nant model family in bo. Indeed, bo is often regarded as the “killer
application” for gps.

gps possess several compelling characteristics that make them an
ideal choice as surrogate models for bo. First and foremost, gp mod-
els offer reliable and well-calibrated predictive uncertainty estimates,
which has proven to be of crucial importance in practice [228]. Second,
to be specific, the gp regression model with Gaussian noise (i. e., the
“textbook” version described in Section 2.4) stands out as a rare ex-
ample of a highly-flexible model that retains its analytical tractability.
Notably, both the posterior predictive density and the marginal likeli-
hood can be computed analytically – see Equations (2.16) and (2.20).
This tractability is crucial, as eliminating the need for approximate
inference implies not having to compromise on the quality and accu-
racy of uncertainty quantification and hyperparameter estimation for
Bayesian model selection. Despite their favorable tractability proper-
ties, gps remain highly expressive, incorporating only a limited set
of assumptions related to smoothness, stationarity, and characteristic
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lengthscales. These assumptions are generally mild and do not im-
pose significant restrictions in most problems. On the contrary, such
assumptions often prove beneficial in many real-world optimisation
problems.

With this being said, it’s always possible to find counterexamples
of problem scenarios in bo for which gps are ill-suited. When the
unknown function is believed to exhibit nonstationary behaviour,
augmenting a stationary covariance function by warping the inputsnonstationarity

through a nonlinear mapping can create a more expressive nonstation-input warping
ary covariance function. Notable examples of such warping functions
include using cdfs that are flexible yet succinctly parameterised [238]
or employing deep neural networks (dnns) [28, 288]. Similarly, when
the measurement error is believed to be heteroscedastic, extensions canheteroscedasticity

applied to the observation model [89, 159]. In more complex scenarios
involving discrete (ordered and unordered) inputs [77], sequential
inputs [178], or structured inputs with conditional dependencies [116],
it can be challenging to devise useful covariance functions. It goes
without saying that even the most promising approaches introduce a
significant footprint to the framework, not least in terms of computa-
tional overhead or additional parameters to contend with. Moreover,
none of this makes mention of the fact that there is no straightfor-
ward workaround for the more fundamental limitation of exact gp

regression, which has a computational cost that scales cubically with
the number of observations. This limitation precludes running bo for
extended horizons on problems that require numerous evaluations
to reach a global optimum. While the sparse gp approximations de-
scribed in Section 2.4.2 can be readily applied, it is essential to allocate
the inducing points properly [179]. Neglecting this careful allocation
often leads to impractical solutions with degraded performance due
to poorly calibrated uncertainty estimates [228].

If resorting to approximations becomes inevitable, it stands to rea-
son that leveraging alternative estimators that are explicitly designed
to address these specific problem scenarios could potentially pro-
vide greater advantages. For example, when dealing with functions
involving discrete or structured inputs or high-dimensionalities, en-
sembles of decision tree regressors such as extreme gradient-boosting
(xgboost) [34] and random forests (rfs) [19] offer attractive alterna-
tives. In particular, rfs underpin the popular sequential model-based
algorithm configuration (smac) method [111]. In a similar vein, the
tree-structured Parzen estimator (tpe) method [14], on which we ex-
pand further in Chapter 5, has also enjoyed considerable success.
These approaches can handle complex input structures and have
proven effective in various applications, particularly in hyperparame-
ter optimisation (hpo) for automated machine learning (automl).

Similarly, for modelling nonstationarity, capturing nonlinear be-
haviour, or handling multi-output functions in settings like multi-
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task [255], multi-fidelity [124], or multi-objective [101] optimisation,
bnns provide an attractive choice [200, 237, 243, 281]. The prominent
approaches are Bayesian to varying extents. For instance, Snoek et al.
[237] consider a Bayesian treatment of only the final layer of weights
in a posthoc manner, effectively leading to the blr model described
in Section 2.4.3 with neural network (nn) basis functions. In contrast,
Springenberg et al. [243] adopt a more thoroughly Bayesian approach
that encompasses all the nn weights, and utilise sampling-based in-
ference, specifically, stochastic gradient Hamiltonian Monte Carlo
(sghmc) [33], to approximate the posterior predictive density. Recent
efforts to enhance the performance of bnns in bo have focused on
leveraging the latest advancements in Bayesian deep learning [131,
145].

Thus seen, ensuring tractability of the posterior predictive density
often necessitates making compromises in the form of simplifications
and crude approximations. Unfortunately, these compromises can
often inhibit the expressive power and the range of benefits offered
by these alternative surrogate model families. Consequently, there is
no model family that can perfectly address all problem scenarios and
provide an ideal solution without incurring some trade-offs.

In Chapter 5, we explore an alternative paradigm for bo that circum-
vents the need for an explicit model of the unknown function, instead
focusing on directly approximating the acquisition function. This re-
framing effectively sidesteps the tractability requirements and opens
the door to powerful model families that would otherwise render the
predictive density unwieldy or simply intractable to compute.

2.5.2 Acquisition Functions

Almost without exception, acquisition functions rely on the predictive
density to represent posterior beliefs about the unknown function
in order to score the potential benefit of a candidate location. In cer-
tain cases, this score incorporates a preference for outcomes specified
through a utility function. This thesis is primarily concerned with
acquisition functions of this nature, so-called the improvement-based
acquisition functions, such as the well-established probability of im- improvement-based

acquisition functionprovement (pi) [117] and expected improvement (ei) [176]. Despite the
emergence of numerous new and sophisticated acquisition functions
like knowledge gradient (kg) [225], entropy search (es) [96], predictive
es (pes) [102], and their variants [279], the improvement-based acquisi-
tion functions remain widely used. Such functions can generally be
expressed as an expectation of the utility function, expected utility

α(x;DN , τ) ≜ Ep(y | x,DN)[U(y; τ)], (2.45)

where τ denotes a parameter representing some threshold and U(y; τ)

denotes a utility function that typically depends on the difference be-
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tween τ and y (i. e., the “improvement”). By convention, τ is set to the
incumbent, the lowest function value observed so far, τ = minn yn [290].

2.5.2.1 Probability of Improvement

In the classical pi acquisition function [117], the utility function simply
indicates whether y improves upon some threshold τ,

UPI(y, τ) ≜ I(τ − y > 0). (2.46)

Suppose the posterior predictive density takes the form of a Gaussian

p(y | x,DN) = N (y | µ(x), σ2(x)). (2.47)

Then, Equation (2.45) leads to

αPI(x;DN , τ) = p(y ≤ τ | x,DN) = Ψ(Zτ(x)), (2.48)

where

Zτ(x) ≜
τ − µ(x)

σ(x)
,

and Ψ denotes the cdf of the standard normal distribution

2.5.2.2 Expected Improvement (EI)

In ei [176], the utility function quantifies the nonnegative amount by
which y improves upon threshold τ,

UEI(y, τ) ≜ max(τ − y, 0). (2.49)

This is known as the improvement utility function. When the predic-
tive density is the Gaussian from Equation (2.47), the expectation
from Equation (2.45) is of the improvement utility function (hence the
name), and evaluates to

αEI(x;DN , τ) = σ(x) · [Zτ(x) ·Ψ(Zτ(x)) + ψ(Zτ(x))] , (2.50)

where ψ denotes the pdf of the standard normal distribution.
In Figure 2.10, we plot the ei/pi criteria as functions of the posterior

predictive mean µ(x) and variance σ2(x). We see that the value to
which pi assigns x depends primarily on whether the predictive mean
µ(x) exceeds the threshold, in this example τ = 0, and less so on
the predictive variance σ2(x). Furthermore, particularly when the
predictive variance is close to zero, the function is essentially piecewise
constant with a discontinuity at τ. In other words, and as can be
expected from simply looking at its analytical expression alone, pi

either rewards a high or low value depending on whether or not µ(x)
exceeds the threshold, but is indifferent to the amount by which it does.
In practice, this can lead to the optimisation procedure getting stuck
in local optima and inadequately exploring the search space [75]. In
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Figure 2.10: Values of improvement-based acquisition functions plotted in
terms of the posterior predictive mean µ(x) and variance σ2(x).
pi (left) heavily favours exploitation while ei (right) strikes a
slightly better balance between exploitation and exploration.

contrast, the ei criterion does take into account the amount by which
a candidate location in expectation improves upon the threshold.
Furthermore, broadly speaking, for any given fixed value of µ(x), the
reward assigned by ei increases as the uncertainty, or, more precisely,
the variance σ2(x), increases. Thus seen, ei is less prone than pi to
exploit too aggressively to its own detriment.

While the exact expressions of Equations (2.48) and (2.50) are both
easy to evaluate and optimise, the conditions necessary to satisfy
Equation (2.47) can often come at the expense of flexibility and expres-
siveness. In Chapter 5, we will consider an altogether different way to
express pi/ei themselves.

2.5.2.3 Upper/Lower Confidence Bound

The upper confidence bound (ucb) [244] function is another popular
criterion. ucb has its roots in the multi-armed bandits literature [135]
and come with favorable theoretical properties and provable regret
bounds. To maintain consistency with our running context of function
minimisation, we shall discuss the lcb. Like pi/ei the lcb criterion can
also be expressed in terms of the predictive mean and variance µ and
σ2,

αLCB(x;DN , λ) ≜ −µ(x) +
√

λ · σ(x),
where, similar to τ in the improvement-based criteria, λ is a parameter
that controls the tendency to explore. Interestingly, ucb/lcb cannot
be expressed in terms of the expected utility from Equation (2.45).
ucb/lcb is known as an optimistic acquisition function, since, by de- optimistic

acquisition functionsign, it behaves optimistically in the presence of uncertainty. Indeed,
from Figure 2.11, we readily see that it assigns greater value to loca-
tions x where the level of uncertainty, or, more precisely, the predictive
variance σ2(x), is high.
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Figure 2.11: Values of the lower confidence bound (lcb) criterion with λ =
1 plotted in terms of the posterior predictive mean µ(x) and
variance σ2(x). lcb is said to favour exploration, since it behaves
optimistically in the face of uncertainty – a higher value is
assigned to regions where the variance σ2(x) is large.

2.5.2.4 Thompson Sampling

Thompson sampling, a widely-used optimisation policy in bo, was
adapted for continuous optimisation from a policy originally proposed
for the multi-armed bandit problem almost a century ago [258].

Unlike the acquisition functions discussed earlier, which represented
adaptive, deterministic policies, Thompson sampling is an adaptive,
stochastic policy. Like previous acquisition functions, it still depends on
the posterior predictive distribution, but does not explicitly involve the
predictive mean and variance. Instead, Thompson sampling involves
realisations of the unknown objective function randomly sampled
from the predictive distribution itself,

αTS(x;DN) ≜ f (x), f ∼ p( f∗ | x∗, X, y).

In other words, while the improvement-based polices from Sections 2.5.2.1
and 2.5.2.2 select the best candidate solution in expectation by averaging
over the objective functions, Thompson sampling determines the best
candidate solution according to a randomly sampled objective function.
Thus seen, this approach balances exploration and exploitation by
sampling observations proportional to their probability of optimality,
effectively encouraging exploitation, while the stochasticity inherent
in random sampling ensures exploration [75].

In practice, sampling random functions from a gp that can be evalu-
ated at arbitrary points, let alone efficiently optimised, poses a con-
siderable challenge. Consequently, a dominant approach adopts the
weight-space perspective of gps, leveraging its spectral decomposition
to obtain a posterior weight density. Weights w can be sampled effi-
ciently from this posterior and used to construct random functions
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f (x) ≜ w⊤ϕ(x) that are (approximately) equal in distribution to gp

posterior samples, yet are easy to manipulate and optimise [102, 228,
289, 291]. In Appendix A, we explore the use of various numerical
integration methods to further improve the computational efficiency
of sampling random functions from gp posteriors.

2.6 summary

This chapter laid the essential groundwork for our thesis by intro-
ducing fundamental concepts in probabilistic modelling, Bayesian
statistics, and variational inference. We highlighted the role of statisti-
cal divergences and density-ratio estimation in approximate inference,
establishing a foundation for advanced topics in probabilistic ml. Our
discussion also included Gaussian processes and their sparse approx-
imations based on vi, concluding with the basic concepts behind
Bayesian optimisation.

Our discussion of Gaussian processes and variational inference set
the stage for our subsequent exploration of orthogonally-decoupled
sparse Gaussian processes with spherical neural network activation
features. This forms the focus of Chapter 3, representing a unique
integration neural networks with Gaussian processes. Similarly, our
examination of variational inference, the variational estimation of f -
divergences, and density-ratio estimation, laid the groundwork for
a new derivation of cyclegans from the perspective of approximate
Bayesian inference, which we examine in Chapter 4. Lastly, the ba-
sic concepts of density-ratio estimation and Bayesian optimisation
introduced here forms the basis for our model-agnostic approach to
Bayesian optimisation based on binary classification, which we discuss
in Chapter 5.

In summary, this chapter provides the the necessary foundation for
the advanced methodologies described in the subsequent chapters,
bridging fundamental principles with new perspectives in probabilis-
tic ml.





A D D E N D U M

2.a kl divergence simplification

The kl divergence simplifies as follows:

kl [q(f∗, f, u) ∥ p(f∗, f, u | y)]

=
∫∫∫

p(f∗ | f, u)q(f, u) log
XXXXXXp(f∗ | f, u)q(f, u)

XXXXXXp(f∗ | f, u)p(f, u | y) df∗dfdu

=
∫∫

q(f, u) log
q(f, u)

p(f, u | y) dfdu = kl [q(f, u) ∥ p(f, u | y)] .

2.b optimal variational distribution for general like-
lihoods

We have

elbo(q) =
∫∫

p(f | u)q(u) log p(y | f)dfdu +
∫∫

p(f | u)q(u) log
p(u)
q(u)

dfdu

=
∫

q(u)
(∫

p(f | u) log p(y | f)df
)

du +
∫

q(u) log
p(u)
q(u)

du

=
∫

q(u) log F(y, u)du +
∫

q(u) log
p(u)
q(u)

du

=
∫

q(u) log
F(y, u)p(u)

q(u)
du.

Taking the functional derivative of the elbo wrt to q(u), we get

∂

∂q(u)
elbo(q) =

∂

∂q(u)

(∫
log

F(y, u)p(u)
q(u)

q(u)du
)

=
∫

∂

∂q(u)

(
log

F(y, u)p(u)
q(u)

q(u)
)

du

=
∫

log
F(y, u)p(u)

q(u)

(
∂

∂q(u)
q(u)

)
+

q(u)
(

∂

∂q(u)
log

F(y, u)p(u)
q(u)

)
du

=
∫

log
F(y, u)p(u)

q(u)
+ q(u)

(
− 1

q(u)

)
du

=
∫

log F(y, u) + log p(u)− log q(u)− 1 du.

Setting this expression to zero, we obtain

log q∗(u) = log F(y, u) + log p(u)− 1

⇒ q∗(u) ∝ F(y, u)p(u).

43
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2.c intermediate lower bound for gaussian likelihoods

To carry out this derivation, we will need to recall the following two
straightforward identities. First, we can express the inner product
between two vectors as the trace of their outer product,

a⊤b = tr(ab⊤).

Second, we have the following relationship between the covariance
matrix Cov[a] and the auto-correlation matrix E[aa⊤],

Cov[a] = E[aa⊤]−E[a]E[a]⊤

⇔ E[aa⊤] = Cov[a] + E[a]E[a]⊤

Additionally, let’s denote the mean and covariance of the prior condi-
tional p(f | u) in Equation (2.22) as

b ≜ Qfuu, and Sff ≜ Kff −Qff,

respectively. Together, these allow us to write

log F(y, u) =
∫

logN (y|f, β−1I)N (f | b, Sff)df

= −β

2

∫
(y− f)⊤(y− f)N (f | b, Sff)df− N

2
log (2πβ−1)

= −β

2

∫
tr
(

yy⊤ − 2yf⊤ + ff⊤
)
N (f | b, Sff)df− N

2
log (2πβ−1)

= −β

2
tr
(

yy⊤ − 2yb⊤ + Sff + bb⊤
)
− N

2
log (2πβ−1)

= −β

2
(y− b)⊤(y− b)− N

2
log (2πβ−1)− β

2
tr(Sff)

= logN (y | b, β−1I)− β

2
tr(Sff).

Therefore, we have

F(y, u) = N (y | b, β−1I)× exp
(
−β

2
tr(Sff)

)
. (2.51)

as required.

2.d optimal variational distribution for gaussian like-
lihoods

Firstly, the optimal variational distribution can be found in closed-form
as

q∗(u) ∝ F(y, u)p(u)

∝ N (y |Qfuu, β−1I)N (u | 0, Kuu)

∝ exp
(
−β

2
(y−Qfuu)⊤(y−Qfuu)− 1

2
u⊤K−1

uu u
)

∝ exp
(
−1

2

(
u⊤Λu− 2β(Qufy)⊤u

))
,
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where

Λ ≜ K−1
uu + βQufQfu = K−1

uu(Kuu + βKufKfu)K−1
uu .

By completing the square, we get

q∗(u) ∝ exp
(
−1

2
(u− βΛ−1Qufy)⊤Λ(u− βΛ−1Qufy)

)

∝ N (u | βΛ−1Qufy, Λ−1).

If we define
M ≜ Kuu + βKufKfu

so that
Λ = K−1

uu MK−1
uu ,

we finally get

q∗(u) = N (u | βKuuM−1Kufy, KuuM−1Kuu),

as required.

2.e collapsed lower bound for gaussian likelihoods

We have

elbo(q∗) = log
(∫

p(u)F(y, u)du
)

= log
[

exp
(
−β

2
tr(Sff)

) ∫
N (y |Qfuu, β−1I)p(u)du

]

= log
∫
N (y |Qfuu, β−1I)N (u | 0, Kuu)du− β

2
tr(Sff)

= logN (y | 0, β−1I + QfuKuuQuf)−
β

2
tr(Sff)

= logN (y | 0, Qff + β−1I)− β

2
tr(Sff).

2.f spectral density of the squared exponential kernel

We calculate the spectral density for the se kernel in 1D from Equa-
tion (2.17). Using Equation (2.39), we have

p(ω) =
1

2π

∫
k(t, 0)eiωt dt

=
ℓ√
2π

∫
N (t | 0, ℓ2)eiωt dt

=
ℓ√
2π

exp
(
−1

2
ℓ2ω2

)
= N

(
ω | 0, ℓ−2) ,

as required.
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2.g cosine difference as inner product

Firstly, recall the angle sum-and-difference trigonometric identity,

cos α± β = cos α cos β∓ sin α sin β. (2.52)

Taking the inner product of ψω evaluated at inputs x and x′, we obtain

ψω(x)⊤ψω(x′) = cos (ω⊤x) cos (ω⊤x′) + sin (ω⊤x) sin (ω⊤x′) (2.53)

= cos (ω⊤(x− x′)),

as required.
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preface

This chapter is derived from work previously published as:
Louis C Tiao, Vincent Dutordoir, and Victor Picheny. “Spherical

Inducing Features for Orthogonally-Decoupled Gaussian Processes”.
In: Proceedings of the 40th International Conference on Machine Learn-
ing. Ed. by Andreas Krause et al. Vol. 202. Proceedings of Machine
Learning Research. PMLR, July 2023, pp. 34143–34160. url: https:
//proceedings.mlr.press/v202/tiao23a.html. (Accepted as Oral
presentation).

3.1 introduction

Gaussian processes (gps) provide a versatile and robust framework for
modelling unknown functions, offering data efficiency, flexible encod-
ing of prior beliefs, and reliable uncertainty estimation. Their broad
application in sequential decision-making makes them invaluable in
diverse fields of ml and optimisation.

In spite of their many advantages, gps are often compared un-
favourably to deep nns for their poor scalability to large datasets, and
their inability to capture rich hierarchies of abstract representations [28,
192, 288]. While gps are the infinite-width limit of nns and therefore, in
theory, have infinitely more basis functions [185], these basis functions
are static and fully determined by the covariance function [156]. This
makes it difficult for gps to flexibly adapt to complex and structured
data from which it is beneficial for the basis functions to learn and
encode useful representations.

Considerable research effort has been devoted to sparse approxima-
tions for gps [46, 204, 226, 234]. Not least of these is sparse variational
gps (svgps) [98, 99, 262], which we examined in Section 2.4. Such
advances have not only improved the scalability of gps, but also un-
locked more flexibility in model specification. In particular, the use
of inter-domain inducing variables in svgp [140] effectively equips the
gp approximation with data-dependent basis functions. Recent works
have exploited this to construct a new family of svgp models in which
the basis functions correspond to activations of a feed-forward nn [66,
252]. By stacking multiple layers to form a dgp [49], the propagation
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of the predictive distribution accurately resembles a forward-pass
through a deep nn.

In this chapter, we show that while this approach results in a poste-
rior predictive with a more expressive mean, the variance estimate is
typically less accurate and tends to be over-dispersed. Additionally,
we examine some practical challenges associated with this method,
such as limitations on the use of certain popular kernel and nn ac-
tivation choices. To address these issues, we propose an extension
that aims to mitigate these limitations. Specifically, when viewed from
the function-space perspective, the posterior predictive of svgp de-
pends on a single set of basis functions that is determined by only a
finite collection of inducing variables. Recent advances introduce an
orthogonal set of basis functions as a means of capturing additional
variations remaining from the standard basis [36, 223, 230]. We extend
this framework by introducing inter-domain variables to construct
more flexible data-dependent basis functions for both the standard
and orthogonal components. In particular, we show that incorporating
nn activation inducing functions under this framework is an effective
way to ameliorate the aforementioned shortcomings. Our experiments
on numerous benchmark datasets demonstrate that this extension
leads to improvements in predictive performance against comparable
alternatives.

3.2 inter-domain inducing features

Recall from Equation (2.24) that the test predictive density at unseen
points f∗ ≜ f (X∗) is

q(f∗) = N (f∗ |Q∗umu, K∗∗ −Q∗u(Kuu − Cu)Qu∗) , (3.1)

where parameters mu and Cu are free parameters. In the rkhs associ-
ated with k, this predictive density has a dual representation in which
the mean and covariance share the same basis determined by u [36,
223]. More specifically, the basis function is effectively the vector-
valued function ku : X → RM whose m-th component is defined
as

[ku(x)]m ≜ Cov ( f (x), um) . (3.2)

In the standard definition of inducing points as presented in Sec-
tion 2.4.2,

[ku(x)]m = k(zm, x),

therefore, the basis function is solely determined by the covariance
function k and the local influence of pseudo-input zm.

Inter-domain inducing features are a generalisation of standard in-inter-domain
inducing features ducing variables in which each variable um is defined through the

transformation of f (·) by

um ≜ Lm[ f ].
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for some linear operator Lm : RX → R. A particularly useful operator
is the integral transform,

Lm[ f ] ≜
∫

X
f (x)ϕm(x)dx,

which was originally employed by Lázaro-Gredilla and Figueiras-
Vidal [140]. Refer to the manuscript of Wilk et al. [283] for a more
thorough and contemporary treatment. A closely related form is the
scalar projection of f onto some ϕm in the rkhs H of k,

Lm[ f ] ≜ ⟨ f , ϕm⟩H, (3.3)

which leads to
[ku(x)]m = ϕm(x)

by the reproducing property of the rkhs. This, in effect, equips the reproducing property

gp approximation with adaptive basis functions ϕm that are not solely
determined by a fixed kernel, and suitable choices can lead to sparser
representations and considerable computational benefits [25, 65, 97,
253].

3.2.1 Spherical Harmonics Inducing Features

An instance of inter-domain features in the form of Equation (3.3)
are the variational Fourier features (vffs) [97], in which ϕm form an
orthogonal basis of trigonometric functions. This formulation offers
significant computational advantages but scales poorly beyond a small
handful of dimensions. To address this, Dutordoir, Durrande, and
Hensman [65] propose a generalisation of vffs using the spherical har-
monics for ϕm, which can be viewed as a multi-dimensional extension spherical harmonics

of the Fourier basis.

(a) Zonal: Y4,0 (b) Tesseral: Y8,3 (c) Sectorial: Y3,3

Figure 3.1: A visual representation of three different surface harmonics of the
first kind. This set of examples originates from the monograph of
Efthimiou and Frye [67].

The construction relies on the Mercer’s decomposition of zonal Mercer’s
decompositionkernels, which can be seen as the analog of stationary kernels in
zonal kernelsEuclidean spaces, but for hyperspheres. They can be expressed as
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k(x, x′) = κ
(
x̃⊤x̃′

)
for some shape function κ : [−1, 1] → R, where

η̃ ≜ η
∥η∥ ∈ Sd−1 for any η ∈ Rd . Loosely speaking, just as stationary

kernels are determined by the distance between inputs, zonal kernels
depend only on the angle between inputs.

The spherical harmonics form an orthonormal basis on L2(Sd−1)

consisting of the eigenfunctions of the kernel operator K,

KYℓ,j = aℓYℓ,j,

where Yℓ,j is the spherical harmonic of level ℓ and order j, and aℓ is
the corresponding eigenvalue, or, Fourier coefficient.

A visualisation is shown in Figure 3.1. The spherical harmonics
are tricky to visualise not only in higher dimensions, but even in
three dimensions, because they are, in general, complex-valued. Here
we show, in three dimensions, several surface harmonics of the first
kind, which correspond to the real or imaginary parts of the spherical
harmonics, depending on the value of j. The surface harmonics can be
further divided into the categories of zonal which are of the form Yℓ,0,
tesseral Yℓ,j for j ̸= 0, and sectorial Yℓ,ℓ. Each of the surface harmonics
shown here is a representative example of its respective category.

Conveniently, by the Funk-Hecke theorem, the Fourier coefficient aℓ
amounts to the one-dimensional integral

aℓ =
Ωd

C(α)
ℓ (1)

∫ 1

−1
κ(t)C(α)

ℓ (t)(1− t2)
d−3

2 dt,

where C(α)
ℓ is the Gegenbauer polynomial of degree ℓ and α ≜ (d−1)/2.

Now, the number J(d, ℓ) of spherical harmonics that exist at a given
level ℓ is determined by the multiplicity of eigenvalue aℓ.

Thus, κ(t) can be represented by

κ(t) = ∥ξ∥∥ξ′∥
∞

∑
ℓ=0

J(d,ℓ)

∑
j=1

aℓYℓ,j(ξ̃)Yℓ,j(ξ̃
′
), (3.4)

where t ≜ ξ̃
⊤

ξ̃
′ for ξ, ξ′ ∈ Rd. We refer the reader to the manuscript of

Dutordoir et al. [66, Appendix B] for a concise summary of spherical
harmonics in multiple dimensions.

Importantly, Equation (3.4) directly yields a Mercer decomposition
for zonal kernels. In particular, let λℓ denote the Fourier coefficients
associated with kernel k. This gives rise to the inter-domain features
ϕm ≜ Yℓ,j, where m indexes the pairs (ℓ, j). Crucially, because the
spherical harmonics constitute an orthogonal system, this leads to a
diagonal covariance

[Kuu]mm′ ≜ Cov (um, um′) = λ−1
m δmm′ ,

where λm ≜ λℓ and δ denotes the Kronecker delta.
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3.2.2 Spherical Neural Network Inducing Features

The recent works of Dutordoir et al. [66] and Sun, Shi, and Grosse
[252] aim to construct inter-domain features ϕm such that ku(x) in
Equation (3.2) corresponds to a hidden layer in a feed-forward nn:
σ(βx), for some β ∈ RM×d and activation σ such as the softplus or
the rectified linear unit (relu) function.

x1
x2

zm

(a) An example relu-activated hidden
unit Hm : X → R visualised on the
unit sphere in 3D and projected onto
a plane.
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z1,dz1,d

...

...

(b) Architectural diagram of the basis
functions ku(x), which corresponds
to the hidden layer of a feedforward
nn when each ϕm ≜ Hm represents a
hidden unit.

Figure 3.2: Basis functions ku : X → RM as hidden layers of a feedforward
nn.

In particular, let Hm : X → R denote the output of the m-th hidden
unit. Additionally, let us project this function onto the unit hyper-
sphere,

Hm(x) ≜ ∥zm∥∥x∥ · σ
(

z⊤mx
∥zm∥∥x∥

)
. (3.5)

See Figure 3.2 for a visualisation of this function. Now, since this
function is itself zonal, it can be represented in terms of the spherical
harmonics as in Equation (3.4). Let ςℓ denote its associated Fourier
coefficient. Thus, the inter-domain features can be defined as ϕm ≜ Hm,
which leads to the covariance

[Kuu]mm′ =
∞

∑
ℓ=0:
λℓ ̸=0

ς2
ℓ

λℓ

ℓ+ α

α
C(α)
ℓ

(
z⊤mzm′

∥zm∥∥zm′∥

)
, (3.6)

where λℓ denotes the Fourier coefficients associated with kernel k.
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We refer to this construction as the activated svgp. Notably, the
posterior predictive mean of the activated svgp is equivalent to the
output of a single-layer feedforward nn, as illustrated in Figure 3.3.
Through this perspective, one can reason by analogy that the pos-
terior predictive variance serves as a measure of uncertainty in the
predictions of the nn. The activated svgp has been shown to produce
competitive results, especially when multiple layers are composed to
form a dgp [49]. In this configuration, the propagation of the predictive
means closely emulates a forward-pass through a deep nn.

x1
x2

(a) The predictive mean of an activated

svgp model with relu activation fea-
tures, visualised on the unit sphere in
3D and projected onto a plane.

x1

x2

xd

...

ϕ1

ϕ2

ϕ3

ϕ4

ϕM

...

µ1

µT

...

(b) Architectural diagram of the predic-
tive means of a (multi-output) acti-
vated svgp model.

Figure 3.3: The predictive mean of an activated svgp model corresponds to
a single-layer feedforward nn.

Despite these favorable properties, activated svgps have several lim-
itations when it comes to their use with common covariance functions.
Before elaborating on them in Section 5.3, we discuss the orthogonally-
decoupled gp framework on which our proposed extension relies.

3.3 orthogonally decoupled inducing points

Recent work has improved the efficiency of sparse gp methods through
the structured decoupling of inducing variables [36, 223, 230]. This
not only enables the use of more variables at a reduced computational
expense but also allows for more flexibility in modelling the predictive
mean and covariance independently. We focus on the general frame-
work of Shi, Titsias, and Mnih [230] under which its predecessors can
be subsumed.
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In particular, let the random function f (x) from Equation (2.14) be
decomposed into the sum of two independent gps,

f (x) = g(x) + h(x),

where

g(x) ∼ GP(0, k⊤u (x)K
−1
uu ku(x′)), h(x) ∼ GP(0, s(x, x′))

and let the covariance function s(x, x′) be defined according to the
Schur complement of Kuu,

s(x, x′) ≜ k(x, x′)− k⊤u (x)K
−1
uu ku(x′),

where ku is defined in Equation (3.2). Intuitively, one can view g as
the projection of f onto u, and h ⊥ g, i. e. h is orthogonal to g [97]
in the statistical sense of linear independence [214]. See Figure 3.4
for an illustration of the priors of g(x) and h(x) and a geometric
interpretation in terms of vector subspaces.
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ku(x)>K−1
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(a) Prior variance decomposed. The prior vari-
ance of f (x) is k(x, x) = α for kernel ampli-
tude α = 1, which can be decomposed as
the sum of the prior variances of g(x) and
h(x). Vertical dashed lines indicate the loca-
tion of inducing inputs zm for m = 1, . . . , 4.
At these locations, the variance of g(x) is
one while that of h(x) is zero.

Π

h

g

f

(b) Orthogonal decomposition of
function f wrt the hyperplane
Π ≜ {α⊤ku(·); α ∈ RM}; func-
tion g is the orthogonal projection
of f onto Π and function h is the
residual component perpendicu-
lar to Π.

Figure 3.4: Function f (x) decomposed as the sum of two independent gps.

Let h be the values of h at observed inputs X, i. e. h ≜ h(X). Then
we have

p(h) = N (h | 0, Sff),

where Sff ≜ Kff −Qff. This allows one to reparameterise f ∼ p(f | u)
from Equation (2.22), for a given u, as

f = Qfuu + h, h ∼ p(h). (3.7)

The model’s joint distribution can now be written as

p(y, h, u) = p(y | h, u)p(h)p(u),

where the likelihood is now

p(y | h, u) = N (y |Qfuu + h, β−1I).
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W X Z

f (·) v f u

h(·) v′ h -

Table 3.1: Summary of notation: relationships between input locations and
output variables.

Next, orthogonal inducing variables v, which represent the values of
f at a collection of K orthogonal inducing locations W ≜ [w1 · · ·wK]

⊤,
are introduced. Similarly, inducing variables v′ represent the values
of h at W. The reader may find it helpful to refer to Table 3.1 for a
summary of the relationships between the input locations and the
output variables defined thus far.

Now, by definition, v is linearly dependent on v′

v = Qvuu + v′, (3.8)

where Qvu ≜ KvuK−1
uu , which is analogous to the relationship between

f and h in Equation (3.7). Therefore, one need only be concerned with
the treatment of v′. The joint distribution of the model augmented by
the variables v′ now becomes

p(y, h, u, v′) = p(y | h, u)p(u)p(h, v′),

where p(h, v′) = p(h | v′)p(v′) for p(v′) = N (0, Svv) and p(h | v′) =
N (h | SfvS−1

vv v′, Sff − SfvS−1
vv Svf), with

Svf ≜ Kvf −Qvf, Qvf ≜ QvuKuuQuf, (3.9)

Svv ≜ Kvv −Qvv, Qvv ≜ QvuKuuQuv. (3.10)

Let the variational distribution now be q(h, u, v′) = p(h | v′)q(u, v′),
where q(u, v′) ≜ q(u)q(v′) and q(v′) ≜ N (mv, Cv) for variational
parameters mv ∈ RK and Cv ∈ RK×K s. t. Cv ⪰ 0. This gives the test
predictive density q(f∗) = N (µ∗, Σ∗∗), where

µ∗ ≜ Q∗umu + S∗vS−1
vv mv, (3.11)

Σ∗∗ ≜ K∗∗ + Q∗u(Cu −Kuu)Qu∗

+ S∗vS−1
vv (Cv − Svv)S−1

vv Sv∗.
(3.12)

Thus seen, prediction incurs a cost of O(M3 + K3) in this framework.
Like the so-called odvgp framework of Salimbeni et al. [223], when

seen from the dual rkhs perspective, the predictive mean can be
decomposed into a component that shares the same standard basis as
the covariance, in addition to another component that is orthogonal to
the standard basis. However, this framework extends odvgp further by
also decomposing the predictive covariance into parts corresponding
to the standard and orthogonal bases. Accordingly, setting Cv = Svv

recovers the odvgp framework, and further setting mv = 0 recovers
the standard svgp framework.
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covariance structure . Now, unlike q(u, v′), which factorizes
according to the mean-field assumption, q(u, v) has a full covariance
structure by virtue of the relationship described in Equation (3.8).
Specifically, we have q(u, v) = N (muv, Cuv), where

muv ≜

[
mu

Qvumu + mv

]
,

and

Cuv ≜

[
Cu CuQuv

QvuCu Cv + QvuCuQuv

]
.

3.4 methodology

We begin this section by outlining some of the limitations of activated

svgps that preclude the use of numerous kernels and inducing features,
not the least of which being popular choices of kernels such as the se

kernel and the Matérn family of kernels, combined with nn inducing
features with relu activations.

The root cause of these issues can be seen in Figure 3.5, where the
Fourier coefficients of various combinations of kernels and activation
features are visualized. Specifically, for each combination, we compare
the (root of the) kernel coefficients

√
λℓ against the feature coefficients

ςℓ at increasing levels ℓ = 1, . . . , 35. The posterior predictives that
result from fitting activated svgp models with these combinations
are shown in Figure 3.6. We consider the Matérn-5/2 kernel as our
running example, but the analysis extends to all stationary kernels.

spectra mismatch . For the Matérn kernel (left column of panes
in Figures 3.5 and 3.6), we see that there are multiple levels ℓ at
which the feature coefficients are zero while the corresponding kernel
coefficients are nonzero. Such discrepancies in the spectra yields a
poor Nyström approximation Qff that fails to fully capture the prior
covariance Kff induced by the kernel, which subsequently leads to the
overestimation of the predictive variance and therefore a suboptimal
elbo. In contrast, the Arccos kernel does not suffer from this pathology.

rkhs inner product. The rkhs inner product associated with
zonal kernels in general is a series consisting of ratios of Fourier
coefficients. Since the relu feature coefficients (top row of panes
in Figures 3.5 and 3.6) decay at the same rate as the square root of
the kernel coefficients, this results in a divergent series which in turn
renders the rkhs inner product indeterminate. In contrast, the feature
coefficients of the comparatively smoother softplus activation (bottom
row of panes in Figures 3.5 and 3.6) decay at a much faster rate, and
thus yields a well-defined rkhs inner product. For the reasons outlined
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Figure 3.5: Comparison of the Fourier coefficients of various kernels and
activation features for increasing levels ℓ = 1, . . . , 35.

above, the work of Dutordoir et al. [66] restricted its scope to the use
of the Arccos kernel in conjunction with the softplus activation (pane
highlighted in gray in Figure 3.5).

truncation error . Lastly, as expected, the truncation of the
series in Equation (3.6) at some finite number L of spherical harmonic
levels often leads to overly smooth predictive response surfaces and
overestimation of the variance.

Spherical Features for Orthogonally-Decoupled GPs

We propose extending the orthogonally-decoupled gp framework
(Section 3.3) to use inter-domain inducing features. Accordingly, let
um ≜ ⟨ f , ϕm⟩H and vk ≜ ⟨ f , ψk⟩H for some arbitrary choices of ϕm, ψk ∈
H. This generalizes the framework of Shi, Titsias, and Mnih [230] since,
by the reproducing property, setting ϕm : x 7→ k(zm, x) and ψk : x 7→
k(wk, x) leads to standard inducing points, um = f (zm), vk = f (wk).
In particular, we define ϕm ≜ Hm, the m-th unit of the spherical
activation layer (Equation (3.5)) described in Section 3.2.2, and ψk(x) ≜
k(wk, x). The posterior predictive of the model described in Section 3.3,
summarized by Equations (3.11) and (3.12), is fully determined by
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Figure 3.6: Posterior predictives of activated svgp models various kernels
and activation features and L = 16 levels.

the covariances Kff, Kuf, Kvf, Kuu, Kvu and Kvv. Recall that [Kuf]mn =

[ku(xn)]m and Kuu is precisely as expressed in Equation (3.6). We have

[Kvf]kn ≜ Cov (vk, f (xn)) = k(wk, xn),

[Kvu]km ≜ Cov (vk, um) = ϕm(wk),

[Kvv]kk′ ≜ Cov (vk, vk′) = k(wk, wk′).

Note that the cross-covariance Kvu between u and v can be interpreted
as the forward-pass of the orthogonal pseudo-input wk through the nn

activation Hm. Crucially, these terms constitute the orthogonal basis
and provide additional degrees of flexibility, through free parameters
W, that can compensate for errors remaining from the original basis
– in both the predictive mean and variance. Suffice it to say, this is
not the only possible choice but is one that possesses a number of
appealing properties.

As discussed in Section 3.3, the addition of K inducing variables
incurs a cost of O(M3 + K3). More precisely: suppose the exact cost
is C · (M3 + K3) operations for some constant C wrt M, K. Further,
suppose K = B ·M for some B > 0. Then there are a total of (B+ 1) ·M
inducing variables (orthogonal or otherwise) and the cost becomes
(B3 + 1)C · M3. By comparison, incorporating the same number of
inducing variables in svgp costs (B + 1)3C ·M3. That is, this approach
leads to a (B3 + 1)-fold increase in the constant rather than a (B + 1)3-
fold increase. Concretely, this means that doubling the number of
inducing variables doubles the constant in this approach, but leads
to an eight-fold increase in svgp. While such a difference vanishes
asymptotically for large M and K, it still has a considerable impact for
modest sizes (M, K < 1, 000) that are feasible in practice. Thus seen,
incorporating an orthogonal basis spanned by K inducing variables
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is a more cost-effective strategy for improving activated svgp than
increasing M or the truncation level L.

3.5 related work

Efforts to establish the connection between gps and nns have been
ongoing for decades. Notably, as first identified by Neal [185], the
behavior of a single-layer nn converges to that of a gp as its width
grows to infinity. This phenomenon extends to various activations
[156, 284], not least the relu activation [38], which pervades mod-
ern deep learning. It also applies in the reverse direction, i. e., one
can derive new nn activations from a given gp prior [171]. More re-
cently, several works have identified similar parallels between gps
and dnns [143, 166] and broadly, networks of various architectures
[293]. Despite their close relationship, finite nns consistently surpass
their gp counterparts in practice [78, 190]. Although gps have stood
out for offering precise uncertainty calibration and being amenable to
Bayesian inference without the need to resort to approximations, they
are less scalable by nature and have limited representational capacity.
This limitation stems from the fixed nature of their effective basis
functions, as we alluded to earlier in this chapter. In short, taken to
the infinite-width limit, the basis functions become unable to flexibly
adapt to the inputs [156]. Bayesian neural networks (bnns) present a
compelling middle ground, combining uncertainty estimation with
the representation learning of finite deep neural networks through
approximate Bayesian inference [18, 74, 154, 185]. Deep gps (dgps) [49]
serve as a complementary approach to dnns. By utilising gps layers
in place of weighted affine layers, dgps achieve superior uncertainty
estimation by virtue of their infinite width. Nevertheless, in practice,
dgps can be cumbersome to optimise and scale.

Inter-domain inducing features [140] provide a different approach
to defining inducing variables. Unlike traditional inducing points, in-
ducing features employ a linear transformation of the latent function,
resulting in basis functions that are not purely predetermined by the
kernel but have the flexibility to adapt according to the inputs. No-
tably, this approach can provide substantial computational gains and
the ability to specify more expressive gp approximations. For instance,
the variational Fourier features [97] effectively lead to basis functions
consisting of the Fourier basis. This design leads to a block-diagonal
structure in the covariance matrix, substantially improving compu-
tational efficiency. However, this approach fails to scale gracefully
beyond a few dimensions. The spherical harmonic features [65] can be
seen as an extension of this approach. They not only facilitates infer-
ence in higher dimensions but also results in a diagonal covariance,
slashing inference costs to a linear relationship with the number of
inducing variables. Further developments build on inducing features
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in the spherical domain to represent nns on the sphere in terms of its
spherical harmonics expansion [66, 252]. Rather than computational
gains, it provides yet another compelling middle ground between gps
and nns by tapping the benefits of both. In particular, under this frame-
work, the predictive mean emulates the forward pass of a single-layer
feedforward nn, enabling superior representation learning through
adaptive basis functions. Simultaneously, the posterior variance di-
rectly provides uncertainty estimation without the need to marginalise
layer weights. Nonetheless, as discussed in Section 3.4, this framework
has a tendency to underestimate the predictive uncertainty.

Concurrent with these developments, recent efforts have focused on
improving the flexibility and efficiency of sparse gp methods through
the structured decoupling of inducing variables. This not only allows
the use of a greater number of inducing variables with less computa-
tional demand, but also offers greater independence and flexibility in
representing the predictive means and covariances. More specifically,
when viewed from the dual rkhs perspective, the predictive mean
and variance in svgp [262] share a common set of basis functions.
Cheng and Boots [36] propose a novel parameterisation that allows
the predictive mean to employ its own distinct set of basis functions.
However, without appropriate constraints on these additional basis
functions, this model leads to a poorly-conditioned, nonconvex opti-
mization problem, making it unwieldy to train [94]. Building on this
decoupled parameterisation, Salimbeni et al. [223] propose the odvgp

framework, in which the predictive mean similarly employs a distinct
set of basis functions. Unlike the approach of Cheng and Boots, the
predictive mean maintains a dependency on the principal basis, which
is shared with the predictive covariance. Furthermore, any function
that can be represented by the additional basis in odvgp is, by design,
orthogonal to the span of the principal basis. This results in a better-
conditioned optimisation problem that is suitable for natural gradient
methods, and substantially enhances the model’s flexibility by virtue
of its ability to capture remaining variations that the principal basis
fails to account for. More recently, Shi, Titsias, and Mnih [230] derive
a more general framework from a probabilistic modelling perspective
by augmenting the svgp model with additional inducing variables.
This leads to a predictive density that not only encompasses that of
the odvgp as a special case, but also allows for a more flexible cali-
bration of the predictive uncertainty. It achieves this by allowing the
predictive covariance to be decoupled into the principal and orthogonal
bases, enabling more precise tuning of uncertainty estimates. Overall,
this not only makes more efficient use of inducing variables but also
enhances predictive accuracy and uncertainty estimation.
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3.6 experiments

We describe the experiments conducted to empirically validate our
approach. The open-source implementation of our method can be
found on GitHub at: ltiao/spherical-orthogonal-gaussian-processes. Fur-
ther information concerning the experimental set-up and various
implementation details can be found in Section 3.A.

3.6.1 Synthetic 1D Dataset

We highlight some notable properties of our method on the one-
dimensional dataset of Snelson and Ghahramani [235].

First we fit activated svgp models with different combinations of
kernels and activation features using L = 8 truncation levels. The
resulting posterior predictives are shown in Figure 3.7. More specifi-
cally, in Figure 3.7a, we see that none of the model fits are particularly
tight due in part to truncation errors, since we are using relatively
few levels. This is especially true of the Matérn kernel (left column of
panes), which results in a posterior that is not only too smooth but
also clearly suffering from an overestimation of the variance. A con-
ceptually straightforward way to improve performance is to increase
the truncation level. Accordingly, Figure 3.6 (introduced earlier in
Section 5.3) showed results from effectively the exact same set-up, but
with twice the number of levels (L = 16). With this increase, we see
a clear improvement in the Arccos-softplus case, but no discernible
difference in the other combinations. Notably, the overestimation of
the variances in the Matérn kernel persists. By comparison, Figure 3.7b
shows results from using L = 8 truncation levels, but with the addition
of K = 8 orthogonal inducing variables. Remarkably, incorporating
just a handful of these variables produces substantial improvements,
not least for the Matérn kernel.

Figure 3.8 offers a deeper insight into the underlying mechanisms
that contribute to these improvements. Here we plot the predictive
variance (Equation (3.12)) in terms of its constituent parts. In Fig-
ure 3.8a, we see that the variance estimate with Matérn kernels is
heavily distorted by large spurious contributions in the Kff −Qff term
(dark blue solid line), which is caused by the pathology described in
Section 5.3. On the other hand, in Figure 3.8b, such spurious contri-
butions also appear, but are offset by the subtractive term SfvS−1

vv Svf
(dark orange dashed line). This term constitutes the orthogonal basis,
and provides added flexibility that is effective at nullifying errors
introduced by the original basis.

Each of the three variations discussed above are repeated 5 times,
and some quantitative results are summarized in Figure 3.9. Specifi-
cally, we report the elbo and the throughput, i. e. the average number
of optimisation iterations completed per second. The activated svgp

https://github.com/ltiao/spherical-orthogonal-gaussian-processes
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with L = 8 truncation levels, as seen in Figures 3.7a and 3.8a, is repre-
sented by the blue circular markers. The model resulting from doubling
the number of levels L = 16, as seen in Figure 3.6, is represented by
the orange circular markers. As discussed, this leads to an improvement
in the Arccos-softplus case, but to modest or no improvements oth-
erwise. However, we can now see that this has come at a significant
computational expense, as the throughput has reduced by roughly
half. On the other hand, the model resulting from retaining the same
truncation level but incorporate an orthogonal basis consisting of
K = 8 variables, as seen in Figures 3.7b and 3.8b, is represnted by the
blue cross markers. This can be seen to have roughly the same footprint
as doubling the truncation level, but leads to a considerably improved
model fit, especially in cases involving the Matérn kernel (the only ex-
ception is in the Arccos-softplus case, where doubling the truncation
level retains a slight advantage). All told, incorporating an orthogonal
basis has roughly the same cost as doubling the truncation level but
leads to significantly better performance improvements.

3.6.2 Regression on UCI Repository Datasets

We evaluate our method on a number of well-studied regression
problems from the uci repository of datasets [61]. In particular, we
consider the yacht, concrete, energy, kin8nm and power datasets.
Additional results on the larger datasets from this collection can be
found in Section 3.B.2.

We fit variations of svgp with the Arccos, Matérn, and se kernels,
and (a) standard inducing points, and inter-domain inducing fea-
tures based on (b) relu- and (c) softplus-activated inducing features.
For each of these variants, we consider three combinations of base
and orthogonal inducing variables: (i-ii) 128 and 256 base inducing
variables (and no orthogonal inducing variables), and (iii) 128 base
inducing variables with 128 orthogonal inducing variables. The acti-
vation features are truncated at L = 6 levels. Our proposed method
is represented by the combinations consisting of relu- and softplus-
activated features with orthogonal inducing variables (b-c,iii). The
remaining combinations, against which we benchmark, correspond
to the original svgp (a,i-ii) [262], solvegp (a,iii) [230], and activated

svgp (b-c,i-ii) [66].
To quantitatively assess performance, we report the test root-mean-

square error (rmse) and negative log predictive density (nlpd), shown
in Figures 3.10 and 3.11, respectively. Unless otherwise stated, for each
method and problem, we perform random sub-sampling validation
by aggregating results from 5 repetitions across 10% held-out test sets.
Within the training set, the inputs and outputs are standardized, i. e.
scaled to have zero mean and unit variance and subsequently restored
to the original scale at test time.
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We observe that, irrespective of the choice of kernel, when using
activation features, whether relu- or softplus-activated, augmenting
the model with orthogonal bases significantly improves performance,
notably even more so than doubling the number of base inducing
variables. This can readily be seen across all datasets on both the nlpd

and rmse metrics. Further, with the Arccos kernel, it outperforms its
counterparts based on standard inducing points across most datasets
(the exception being the power dataset). With the Matérn and se

kernels, it achieves results comparable to its standard inducing points
counterparts in most datasets.

3.6.3 Large-scale Regression on Airline Delays Dataset

Finally, we consider a large-scale regression dataset concerning U.S.
commercial airline delays in 2008. The task is to forecast the dura-
tion of delays in reaching the destination of a given flight, utilising
information such as the route distance, airtime, scheduled month, day
of the week, and other relevant factors, as well as characteristics of
the aircraft such as its age (number of years since deployment). The
complete dataset encompasses 5,929,413 flights, of which we randomly
select 1M observations without replacement to form a subset that is
more manageable but still considerable in scale. Results on a reduced
100K subset can be found in Section 3.B.1.

To quantitatively assess performance, we report the test rmse and
nlpd evaluated on a 1/3 held-out test set. The results are shown in the
top and bottom rows of Figure 3.12, respectively. Within the training
set, the inputs and outputs are standardized, i. e. scaled to have zero
mean and unit variance and subsequently restored to the original scale
at test time.

Given the immense volume of data at hand, we are compelled to
utilise mini-batch training for stochastic optimisation [98]. To this end,
we use the Adam optimizer [126] with its typical default settings
(learning rate 1× 10−3, β1 = 0.9, β2 = 0.999). Our batch size is set to
5,000, and we train the models for a total of 1,200 epochs.

We fit variations of svgp with the Arccos kernel and (a) standard
inducing points and (b) inter-domain inducing features based on
softplus-activated inducing features. For each of these variants, we
consider three combinations of base and orthogonal inducing vari-
ables: (i-ii) 500 and 1,000 base inducing variables (and no orthogonal
inducing variables), and (iii) 500 base inducing variables with 500

orthogonal inducing variables. The activation features are truncated at
L = 6 levels. Our proposed method is represented by the combination
consisting of softplus-activated features with orthogonal inducing
variables (b,iii). The remaining combinations, against which we bench-
mark, correspond to the mini-batch svgp (a,i-ii) [98], solvegp (a,iii)
[230], and activated svgp (b,i-ii) [66].
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The outcomes are as expected when employing standard induc-
ing points (left). In particular, doubling the number of base inducing
points from 500 to 1,000 demonstrates significant improvements. Fur-
thermore, by using 500 base inducing points alongside 500 orthogonal
inducing points, we achieve comparable performance to having 1,000

base inducing points, while enjoying improved computationally effi-
ciency. In contrast, when examinining the activated svgp model with
softplus features (right), it’s apparent that it underperforms com-
pared to the original svgp counterparts. Furthermore, doubling the
number of inducing features from 500 to 1,000 has virtually no effect.
However, by incorporating orthogonal bases into the activated svgp

model with 500 features following our proposed approach, we witness
substantial improvements and achieve comparable performance to its
standard inducing points counterparts.

3.7 summary

We considered the use of inter-domain inducing features in the orthogonally-
decoupled svgp framework, specifically, the spherical activation fea-
tures, and showed that this alleviates some of the practical issues
and shortcomings associated with the activated svgp model. We
demonstrated the effectiveness of this approach by conducting em-
pirical evaluations on several problems, and showed that this leads
to enhanced predictive performance over more computationally de-
manding alternatives such as increasing the truncation levels or the
number of inducing variables.

Future work will explore alternative designs of inter-domain in-
ducing features to construct new standard and orthogonal bases that
provide additional complementary benefits.
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(b) Inducing activation features with L = 8 levels and K = 8 orthogonal
bases (our method).

Figure 3.7: Posterior predictives of activated svgp with various kernels
and activation features on the 1D Snelson dataset; black circular
markers represent the observations; blue solid lines and shaded
regions denote the mean and the ±2 standard deviations, resp.
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(b) Inducing activation features with L = 8 levels and K = 8 orthogonal
bases (our method).

Figure 3.8: Decomposition of the posterior predictive variances of svgp with
various kernels and activation features on the 1D snelson dataset
(see Figure 3.7) into its constituent terms; the additive terms
that constitute the predictive variance are indicated by solid
lines, while the subtractive terms are indicated by dashed lines;
terms that constitute the predictive variance of the original svgp

model [262] have a blue hue, while additional terms introduced
by the orthogonally-decoupled model [230] have an orange hue.
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Figure 3.10: Test rmse on regression problems from the uci repository of
datasets for various kernels and activation features. Along the
rows labeled “inducing points”, the red and blue markers (♦,♦)
represent the original svgp model [262], while the green markers
(♦) represent solvegp [230]. Along the remaining rows, the red
and blue markers (♦,♦) represent the activated svgp [66], while
the green markers (♦) represent our proposed approach.



3.7 summary 67

inducing points

RELU features

SOFTPLUS features

YACHT (N = 277,D = 6) ENERGY (N = 691,D = 8) CONCRETE (N = 927,D = 8) KIN8NM (N = 7372,D = 8)

A
rccos

POWER (N = 8611,D = 4)

inducing points

RELU features

SOFTPLUS features
M

atérn- 5/2

0 1 2
NLPD

inducing points

RELU features

SOFTPLUS features

0.5 1.0 1.5 2.0
NLPD

3.0 3.2 3.4
NLPD

−1.0 −0.8 −0.6
NLPD

2.7 2.8 2.9
NLPD

Squared
E

xp

SVGP (M inducing variables, K orthogonal inducing variables)
M = 128,K = 0 M = 256,K = 0 M = 128,K = 128
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and blue markers (♦,♦) represent the activated svgp [66], while
the green markers (♦) represent our proposed approach.

34

35

36

37

te
st

m
et

ri
c

inducing points

R
M

S
E

SOFTPLUS features

0 500 1000
epoch

4.95

5.00

5.05

te
st

m
et

ri
c

0 500 1000
epoch

N
L

P
D

SVGP (M inducing variables, K orthogonal inducing variables)
M = 500,K = 0 M = 1000,K = 0 M = 500,K = 500

Figure 3.12: Test metrics, rmse and nlpd, on the large-scale 2008 U.S. airline
delays dataset using the Arccos kernel with standard inducing
points and softplus-activated features. Along the column la-
beled “inducing points”, the red and blue lines (— and —) repre-
sent the mini-batch svgp [98], while the green line (—) represents
solvegp [230]. Along the column labeled “softplus features”,
the red and blue lines (— and —) represent the activated svgp

[66], while the green line (—) represents our proposed approach.





A D D E N D U M

3.a experimental set-up and implementation details

3.a.1 Hardware

All experiments were carried out on a consumer-grade laptop com-
puter with an Intel Core™ i7-11800H (8 Cores) @ 4.6GHz Processor,
16GB Memory, and a NVIDIA GeForce RTX™ 3070 Laptop (Mobile/Max-
Q) Graphics Card.

3.a.2 Software

Our method is implemented by extending functionality from the
GPFlow software library [167]. The code will be released as open-
source software upon publication. Additional software dependencies
upon which our implementation relies, either directly or indirectly,
are enumerated in Table 3.A.1.

Table 3.A.1: Key software dependencies.

Method Software Library URL (github.com/*)

svgp [262] GPFlow GPflow/GPflow

odvgp [223] - hughsalimbeni/orth_decoupled_var_gps

solvegp [230] - thjashin/solvegp

vish [65] Spherical Harmonics vdutor/SphericalHarmonics

activated svgp [66] - vdutor/ActivatedDeepGPs

- Bayesian Benchmarks hughsalimbeni/bayesian_benchmarks

3.a.3 Hyperparameters

We adopt sensible defaults across all problems and datasets; no hand-
tuning is applied to any specific one. The choices of the hyperparame-
ters and other relevant dependencies are summarized as follows:

optimisation. We use the l-bfgs optimizer [26, 301] with the
default settings from scipy.optimize [275].

likelihood. The Gaussian likelihood variance is initialized to 1.0
across all experiments.
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kernel parameter initialisation. All stationary kernels are
initialized with unit lengthscale and amplitude.

variational parameter initialisation. The variational dis-
tributions q(u), q(v′) are initialized with zero mean and identity
covariance m = 0, C = I.

whitened parameterisation. We do not use the whitened
parameterisation (as used, for example, by Hensman et al. [100] and
Murray and Adams [182]) in either q(u) or q(v′).

inducing point initialisation. We make our best effort to
ensure a fair comparison against baselines involving standard induc-
ing points. To this end, we adopt the best practice of first optimising
the variational parameters, not least the inducing input locations Z
(and W where applicable), before jointly optimising all of the free
parameters. This initialisation phase is done for up to 100 iterations of
the l-bfgs algorithm.

3.b additional results

3.b.1 Regression on Airline Delays Dataset

We repeat the experiment outlined in Section 3.6.3, focusing on a
reduced subset of the 2008 U.S. airline delays dataset that consists of
100K randomly selected observations. Unlike the previous experimen-
tal set-up, the parameters are optimised for a total of 1,000 epochs.
Additionally, we report aggregated results from 5 repetitions across
1/3 held-out test sets. The results are shown in Figure 3.B.1.

3.b.2 Extra UCI Repository Datasets

Results on a few larger regression datasets from the uci repository
can be found in Figure 3.B.2. In this analysis, we adopted the same
combination of activation features and sparse gp models as described
in Section 3.6.2. However, in contrast to Section 3.6.2, we restrict our
focus to the Arccos kernel.
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preface

This chapter is derived from work previously published as:
Louis C Tiao, Edwin V Bonilla, and Fabio T Ramos. “Cycle-Consistent

Adversarial Learning as Approximate Bayesian Inference”. In: ICML
2018 Theoretical Foundations and Applications of Deep Generative Models.
Stockholm, Sweden, July 2018. (Accepted as Oral presentation).

4.1 introduction

Learning correspondences between entities from different domains is
an important and challenging problem in ml, especially in the absence
of paired data. Consider for example the task of image-to-image trans-
lation where we want to learn a mapping from an image in a source
domain, such as a photograph of a natural scene, to a corresponding
image in a target domain, such as the realisation of such a scene in an
1860s celebrated artist’s signature impressionistic style. The shortage
of ground-truth pairings from the source domain to the target domain
renders standard supervised approaches infeasible, thus motivating
the need for unsupervised learning.

Within unsupervised approaches, a number of recently proposed
cyclegan methods have achieved remarkable success in addressing
this problem [125, 302]. As their name suggests, these approaches
are based upon two heuristics: (i) adversarial learning and (ii) cycle
consistency. The former, adversarial learning [86], allows images in the
source domain to be translated to output images that, to an auxiliary
discriminator, are indistinguishable from images in the target domain,
thereby matching their distributions. However, while distribution
matching is necessary, it is insufficient to guarantee one-to-one map-
pings between the images, as the problem is heavily under-constrained.
Briefly stated, the cycle-consistency is the constraint that an image
mapped to a target domain should be representable in the original
domain. It is this constraint that significantly shrinks the space of
possible solutions.

Beyond the empirical risk minimisation framework motivated intu-
itively by the two principles mentioned above, the original cyclegan

formulation lacks any further theoretical justification. Besides provid-
ing sound quantification of uncertainty, a lvm allows us to disentangle
our modelling assumptions from the inference machinery used to
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reason about the model variables. Interpreting standard methods from
a Bayesian perspective has contributed significantly to the understand-
ing of these methods and to the development of new approaches [74,
261].

In this chapter, we introduce implicit lvms, where the prior over hid-
den representations can be specified flexibly as an implicit distribution.
We develop a vi algorithm for this model based on minimisation of
the symmetric kl divergence between a variational joint and the exact
joint distribution, in contrast to traditional reverse KL minimisation,
which notoriously underestimate posterior’s / exact distribution’s
support. Lastly, we demonstrate that the state-of-the-art cyclegans as
proposed contemporaneously by Kim et al. [125] and Zhu et al. [302]
can be derived as a special case within our proposed vi framework,
thus establishing its connection to approximate Bayesian inference
methods.

4.2 implicit latent variable models

Lvms are an indispensable tool for uncovering the hidden representa-
tions of observed data. In a lvm, an observation x is assumed governed
by its underlying hidden variable z, which is drawn from a prior p(z)
and related to x through the likelihood pθ(x | z). Accordingly, the joint
density of x and z is given by

pθ(x, z) = pθ(x | z)p(z). (4.1)

Given data distribution q∗(x) and a finite collection X = {xn}N
n=1 of

observations xn ∼ q∗(x), and the set of corresponding latent variables
Z = {zn}N

n=1, the joint over all variables factorises as, pθ(X, Z) =

∏N
n=1 pθ(xn, zn).

xn

znλn θ

N

(a) Without amortised inference, each lo-
cal latent variable is governed by its
own local variational parameters.

xn

znϕ θ

N

(b) With amortized inference, we condi-
tion on observed variables and em-
ploy a single set of global variational
parameters.

Figure 4.1: Graphical representation of the generative model (solid) and the
recognition model (dashed).

The graphical representation of implicit lvms is depicted in Fig-
ure 4.1. Instead of approximating the exact posterior pθ(z | xn) for
each xn, using a separate variational distribution q(z; λn) with local



4.2 implicit latent variable models 75

variational parameters λn, we condition on x and optimise a single
set of variational parameters ϕ across all x ∼ q∗(x). Accordingly, the
variational distribution is denoted qϕ(z | x) ≜ q(z | x; ϕ).

4.2.1 Prescribed Likelihood

We specify the likelihood through a mapping Fθ that takes as input
random noise ξ and latent variable z,

x ∼ pθ(x | z) ⇔ x = Fθ(ξ; z), ξ ∼ p(ξ). (4.2)

We shall restrict our attention to prescribed likelihoods, where eval-
uation of their density is tractable. This requires that Fθ( · ; z) be a
diffeomorphism wrt ξ and density p(ξ) be tractable. For example,
when Fθ( · ; z) is a location-scale transform of noise ξ and p(ξ) is
Gaussian, we recover Gaussian observation models.

Our model specification is sufficiently general for encapsulating a
broad range of familiar latent variable models, even when we make
simplifying assumptions on the mapping Fθ( · ; z). In particular, con-
sider the special case where the mapping is an affine transformation
of the noise vector ξ,

Fθ(ξ; z) ≜ µθ(z) + Σθ(z)
1
2 ξ, ξ ∼ N (0, I),

for functions µθ and Σθ parameterised by θ that take z as input. To
simplify matters further, assume Σθ is constant wrt to its input, i. e.
Σθ(z) = Ψ for all z. The likelihood can then be written explicitly as

pθ(x | z) = N (x | µθ(z), Ψ).

factor analysis & probabilistic pca . In the case where the
mean function µθ is an affine transformation of z,

µθ(z) ≜ Wz + b,

and the covariance matrix is diagonal Ψ = diag(ψ2
1, . . . , ψ2

D), we re-
cover fa [8]. Furthermore, when the covariance matrix is isotropic
Ψ = ψ2I, we recover probabilistic principal component analysis (ppca)
[261]. In this example, the parameters θ consist of the factor loading
matrix W, the bias vector b and the covariance matrix Ψ.

deep and nonlinear latent variable models . By intro-
ducing nonlinearities to the mean function, we are able to recover
nonlinear factor analysis [139], nonlinear Gaussian sigmoid belief
networks [72], and other more sophisticated variants of deep latent
variable models. When the mapping is defined by a mlp, we can
recover simple instances of a variational autoencoder (vae) with a
Gaussian probabilistic decoder [127, 212].
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4.2.2 Implicit Prior

In lvms, the prior typically specified as a prescribed distribution,
e. g. a factorised Gaussian centered at zero. Oftentimes, however, the
practitioner possesses prior knowledge that simply cannot be embod-
ied within a prescribed distribution. To address this limitation, we
introduce implicit lvms, wherein the prior over latent variables is spec-
ified as an implicit distribution p∗(z), given only by a finite collection
Z∗ = {z∗m}M

m=1 of its samples,

z∗m ∼ p∗(z). (4.3)

This formulation offers the utmost degree of flexibility in the treat-
ment of prior information, the difficulties of which have hindered the
application of Bayesian statistics since the time of Laplace [115].

example : unpaired image-to-image translation . Sup-
pose we have collections of images X and Z∗, which are assumed to
be draws from the data distribution q∗(x) and implicit prior distri-
bution p∗(z), respectively. For example, these might be photographs
of natural landscapes and the paintings of Van Gogh. The goal of
unpaired image-to-image translation is to learn the correspondence
between variables x and z by capturing the underlying generative
process specified by mapping Fθ. This defines the likelihood pθ(x | z)
–a conditional density of x given z. Continuing with the above example,
the problem amounts to learning parameters θ of the mapping such
that this conditional yields photorealistic renderings of scenes por-
trayed in Van Gogh’s paintings. Furthermore, the resulting posterior
on the latent representation pθ(z | x) – a conditional density of z given
x – should produce renderings of landscape scenery in Van Gogh’s
iconic style.

4.3 variational inference

In this section, we describe the first component of our bipartite vi

framework. In traditional vi, one specifies a family Q of densities
over the latent variables and seeks the member q ∈ Q closest in kl

divergence to the exact posterior pθ(z | x) [17, 119, 276].

4.3.1 Prescribed Variational Posterior

We begin by describing the variational family q ∈ Q. We adopt the
common practice of amortising inference using an inference network
[83]. Namely, instead of approximating the exact posterior pθ(z | xn)

for each xn, using a separate variational distribution q(z; λn) with local
variational parameters λn, we condition on x and optimise a single set
of variational parameters ϕ across all x ∼ q∗(x).
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The variational distribution qϕ(z | x) is specified through an inverse
mapping Gϕ that takes as input random noise ϵ and observed variable
x,

z ∼ qϕ(z | x) ⇔ z = Gϕ(ϵ; x), ϵ ∼ p(ϵ). (4.4)

Just as mapping Fθ underpins the generative model, mapping Gϕ

underpins the recognition model [52]. As with the likelihood, we restrict
our attention to prescribed variational distributions.

As depicted in Figure 4.1b, the dependency relationship between
the variational parameters and the latent variables mirrors that of the
model parameters and observed variables. This symmetry is crucial to
the derivation of cyclegan later in Section 4.5.3.2.

4.3.2 Reverse KL Variational Objective

Minimising the reverse kl between the exact and variational poste-
rior is equivalent to maximising the elbo, or minimising its negative,
defined as

Lnelbo(θ, ϕ) ≜ Eq∗(x)qϕ(z | x)[− log pθ(x | z)]
+ Eq∗(x)kl

[
qϕ(z | x) ∥ p∗(z)

]
.

(4.5)

The first term of the elbo is the (negative) ell, defined as

Lnell(θ, ϕ) ≜ Eq∗(x)qϕ(z | x)[− log pθ(x | z)]. (4.6)

It is easy to perform stochastic gradient-based optimisation of this
term by applying the reparameterisation trick [127, 212],

Lnell(θ, ϕ) = Eq∗(x)p(ϵ)[− log pθ(x | Gϕ(ϵ; x))]. (4.7)

However, the second term – the kl divergence between qϕ(z | x) and
implicit prior p∗(z) – is not so straightforward. In particular, the kl

divergence can be expressed as

kl

[
qϕ(z | x) ∥ p∗(z)

]
≜ Eqϕ(z | x)[log r∗(z; x)], (4.8)

where r∗(z; x) is defined as the ratio of densities,

r∗(z; x) ≜
qϕ(z | x)

p∗(z)
. (4.9)

The dependence on this density ratio is problematic since the prior
p∗(z) is implicit and cannot be evaluated directly. To overcome this, we
resort to methods for approximating f -divergences between implicit
distributions, which are inextricably tied to dre [177, 251].
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4.3.3 Approximate Divergence Minimisation

Although we are primarily interested in estimating the kl diver-
gence of Equation (4.8), we give a generalised treatment that is ap-
plicable to all f -divergences [2, 47]. We denote a generic member
of the family of f -divergences between distributions p and q as
D f [p ∥ q] ≜ Ep[ f (q/p)], for some convex lower-semicontinuous func-
tion f : R+ → R.

Leveraging results from convex analysis, Nguyen, Wainwright, and
Jordan [188] devise a variational lower bound that estimates an f -
divergence through samples when either or both of the densities are
unavailable. Nowozin, Cseke, and Tomioka [191] extend this frame-
work to derive gan objectives that minimise arbitrary f -divergences.
These results underpin our methodology, and we restate a variant of
it here for completeness.

Theorem 4.3.1 (Nguyen, Wainwright, and Jordan [188]). Let f ⋆ be the
convex dual of f and R a class of functions with codomains equivalent to
the domain of f ′. We have the following lower bound on the f -divergence
between distributions p(u) and q(u),

D f [p(u) ∥ q(u)] ≥ max
r̂∈R
{Eq(u)[ f ′(r̂(u))]

−Ep(u)[ f ⋆( f ′(r̂(u)))]},
where equality is attained when r̂(u) is exactly the true density ratio r̂(u) =
q(u)/p(u).

Applying Theorem 4.3.1 to p∗(z) and qϕ(z | xn) for a given xn, and
optimising over a class of functions indexed by parameters ωn, we
obtain the following lower bound on their divergence,

D f
[
p∗(z) ∥ qϕ(z | xn)

]
≥ max

ωn

{
Eqϕ(z | xn)[ f ′(rωn(z))]−Ep∗(z)[ f ⋆( f ′(rωn(z)))]

}
.

While this provides a way to estimate any f -divergence between
implicit prior p∗(z) and variational distribution qϕ(z | xn) with only
samples, it also requires us to optimise a separate density ratio esti-
mator with parameters ωn for each observed xn. Instead, as with the
posterior approximation, we also amortise the density ratio estimator
by conditioning on x and optimising a single set of parameters α across
all x ∼ q∗(x). Accordingly, the estimator becomes rα(z; x), taking also
x as input. We now maximise an instance of the following generalised
objective,

Llatent
f (α |ϕ) ≜ Eq∗(x)qϕ(z | x)[ f ′(rα(z; x))]

−Eq∗(x)p∗(z)[ f ⋆( f ′(rα(z; x)))].
(4.10)

Corollary 4.3.2. We have the lower bound,

Eq∗(x)D f
[
p∗(z) ∥ qϕ(z | x)

]
≥ max

α
Llatent

f (α |ϕ), (4.11)

with equality at rα(z; x) = r∗(z; x).
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density ratio estimation objective . We write Llatent
f (α |ϕ)

to denote the dre objective, wherein ϕ is fixed, while α is a free
parameter that varies as this objective is maximised, thus tightening the
bound of Equation (4.11) and the estimate of the density ratio rα(z; x).

divergence minimisation loss . Conversely, the divergence min-
imisation (dm) loss, denoted as Llatent

f (ϕ | α), is minimised wrt ϕ while
α remains fixed, thus approximately minimising the f -divergence. In
theory, this should be symmetric to the dre objective, Llatent

f (ϕ | α) ≜
Llatent

f (α |ϕ). However, alternative settings are often used in practice
to alleviate the problem of vanishing gradients, as we shall see in
Section 4.5.

By applying Theorem 4.3.2 for the setting fkl(u) ≜ u log u, we
instantiate a lower bound on the kl divergence of Equation (4.8) in
the following objective,

Llatent
kl

(α |ϕ) ≜ Eq∗(x)qϕ(z | x)[log rα(z; x)]−Eq∗(x)p∗(z)[rα(z; x)− 1].
(4.12)

As we discuss in Section 4.A, maximisation of the objective in Equa-
tion (4.12) is closely related to the kliep [250].

Now, we define the dm loss symmetrically to the dre objective in
Equation (4.12) – terms not involving ϕ are omitted,

Llatent
kl

(ϕ | α) ≜ Eq∗(x)qϕ(z | x)[log rα(z; x)] (4.13)

≈ Eq∗(x)kl

[
qϕ(z | x) ∥ p∗(z)

]
.

Combined with the ell, this estimate of the kl divergence yields
an approximation to the elbo where all terms are tractable. These
objectives are summarised in the bi-level optimisation problem below,

max
α

Llatent
kl

(α |ϕ), (4.14a)

min
ϕ,θ

Llatent
kl

(ϕ | α) + Lnell(θ, ϕ), (4.14b)

thus concluding the reverse kl minimisation component of our vi

framework.

4.4 symmetric joint-matching variational inference

We now complete the remaining component of our vi framework.
In the previous section, we gave an extension to classical vi, which
is fundamentally concerned with approximating the exact posterior.
Now, let us instead consider directly approximating the exact joint
pθ(x, z) through a variational joint qϕ(x, z).
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4.4.1 Variational Joint

Recall that q∗(x) denotes the empirical data distribution. We define
a variational approximation to the exact joint distribution of Equa-
tion (4.1) as

qϕ(x, z) ≜ qϕ(z | x)q∗(x). (4.15)

We approximate the exact joint by seeking a variational joint closest in
symmetric kl divergence, klsym

[
pθ(x, z) ∥ qϕ(x, z)

]
, where

klsym [p ∥ q] ≜ kl [p ∥ q] + kl [q ∥ p] . (4.16)

We first look at the reverse kl divergence (kl [q ∥ p]) term. When
expanded, we see that it is equivalent to the negative elbo up to
additive constants,

kl

[
qϕ(x, z) ∥ pθ(x, z)

]
≜ Eqϕ(x,z)

[
log qϕ(x, z)− log pθ(x, z)

]
(4.17)

= Lnelbo(θ, ϕ)−H[q∗(x)], (4.18)

where H[q∗(x)] ≜ Eq∗(x)[− log q∗(x)] is the entropy of q∗(x), a con-
stant wrt parameters θ and ϕ. Hence, minimising the kl divergence
of Equation (4.17) can be reduced to minimising Lnelbo(θ, ϕ) of Equa-
tion (4.5), without modification.

4.4.2 Forward KL Variational Objective

As for the forward kl divergence (kl [p ∥ q]) term, we have a similar
expansion,

kl

[
pθ(x, z) ∥ qϕ(x, z)

]
(4.19)

≜ Epθ(x,z)
[
log pθ(x, z)− log qϕ(x, z)

]
(4.20)

= Ep∗(z)pθ(x | z)[log pθ(x | z)− log qϕ(x, z)]−H[p∗(z)]. (4.21)

In analogy with the elbo, we introduce a new variational objective
that is minimised when the forward KL divergence of Equation (4.19)
is minimised. First we define the recognition model analog to the
marginal likelihood – the marginal posterior, or aggregated posterior,
given by qϕ(z) ≜

∫
qϕ(z | x)q∗(x)dx. It can be approximated by the

aggregate posterior lower bound (aplbo). For consistency, we give its
negative, written as

Lnaplbo(θ, ϕ) ≜ Ep∗(z)pθ(x | z)[− log qϕ(z | x)]
+ Ep∗(z)kl [pθ(x | z) ∥ q∗(x)] .

(4.22)

Furthermore, minimising the kl divergence of Equation (4.19) can be
reduced to minimising Lnaplbo(θ, ϕ),

kl

[
pθ(x, z) ∥ qϕ(x, z)

]
= Lnaplbo(θ, ϕ)−H[p∗(z)].
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The first term of the negative aplbo is the (negative) expected log
posterior (elp), defined as

Lnelp(θ, ϕ) ≜ Ep∗(z)pθ(x | z)[− log qϕ(z | x)]. (4.23)

We emphasise a key advantage of having considered the kl between
the joint distributions instead of between the posteriors. Computing
the forward kl divergence between the exact and approximate posterior
distribution is problematic, since it requires evaluating expectations
over the exact posterior pθ(z | x), the intractability of which is the
reason we appealed to approximate inference in the first place.

In contrast, the forward kl divergence between the exact and ap-
proximate joint poses no such difficulties – we are able to sidestep
the dependency on the exact posterior by expanding it into the form
of Equation (4.21). Furthermore, as with the elbo, we can perform
stochastic gradient-based optimisation of the elp term by applying
the same reparameterisation trick as in Equation (4.7).

Now, the kl divergence term of the aplbo in Equation (4.22) can also
be expressed as the expected logarithm of a density ratio r∗(x; z) ≜
pθ(x | z)/q∗(x) that involves an intractable density q∗(x) – the empirical
data distribution. To overcome this, we adopt the same approach as
outlined in Section 4.3.3. Namely, we apply Theorem 4.3.1 to q∗(x)
and pθ(x | z∗), and fit an amortised density ratio estimator rβ(x; z) to
r∗(x; z) by maximising an instance of the generalised objective,

Lobserved
f (β | θ) ≜ Ep∗(z)pθ(x | z)[ f ′(rβ(x; z))]

−Ep∗(z)q∗(x)[ f ⋆( f ′(rβ(x; z)))].
(4.24)

Corollary 4.4.1. We have the lower bound,

Ep∗(z)D f [q∗(x) ∥ pθ(x | z)] ≥ max
β
Lobserved

f (β | θ), (4.25)

with equality at rβ(x; z) = r∗(x; z).

By applying Theorem 4.4.1 with the previously defined fkl(u), we
obtain lower bound objective Lobserved

kl
(β | θ) on the kl divergence

term in Equation (4.22), and a corresponding dm loss Lobserved
kl

(θ | β),
analogous to the definitions of Llatent

kl
(α |ϕ) and Llatent

kl
(ϕ | α) in Equa-

tions (4.12) and (4.13), respectively. See Table 4.B.3 for a summary of
explicit definitions.

Hence, in addition to the bi-level optimisation problems of Equa-
tion (4.14) we have,

max
β

Lobserved
kl

(β | θ), (4.26a)

min
ϕ,θ

Lobserved
kl

(θ | β) + Lnelp(θ, ϕ). (4.26b)

As shown, the minimisations in Equations (4.14b) and (4.26b) corre-
sponds to minimisation of the symmetric kl over the joints klsym

[
pθ(x, z) ∥ qϕ(x, z)

]
,
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while the maximisations in Equations (4.14a) and (4.26a) approximates
the divergences, or more precisely, the density ratios involving implicit
distributions.

4.5 cyclegan as a special case

In this section, we demonstrate that cyclegan methods [125, 302] can
be instantiated under our proposed vi framework.

4.5.1 Basic CycleGAN Framework

To address the problem of unpaired image-to-image translation as
described in Section 4.2.2, the cyclegan model learns two mappings
µθ : z 7→ x and mϕ : x 7→ z by optimising two complementary classes
of objectives.

distribution matching . The first are the adversarial objectives,
which help match the output of mapping µθ to the empirical distribu-
tion q∗(x), and the output of mϕ to p∗(z). In particular, for mapping
mϕ, this involves introducing a discriminator Dα and the saddle-point
adversarial objective,

ℓreverse
gan

(α |ϕ) ≜ Ep∗(z)[log Dα(z)]

+ Eq∗(x)[log(1−Dα(mϕ(x)))],
(4.27)

while minimising it wrt parameters ϕ. This encourages mϕ to produce
realistic outputs z = mϕ(x), x ∼ q∗(x) which, to the discriminator
Dα, are “indistinguishable” from z∗ ∼ p∗(z). A similar adversarial
objective is defined for mapping µθ,

ℓforward
gan

(β | θ) ≜ Ep∗(x)[log Dβ(x)] + Ep∗(z)[log(1−Dβ(µθ(z)))].
(4.28)

cycle-consistency. Next are the cycle-consistency losses, which
enforce tight correspondence between domains by ensuring that re-
construction x′ = µθ(mϕ(x)) is close to the input x, and likewise for
mϕ(µθ(z)). This is achieved by minimising a reconstruction loss,

ℓreverse
const

(θ, ϕ) ≜ Eq∗(x)[∥x− µθ(mϕ(x))∥ρ
ρ], (4.29)

where ∥ · ∥ρ denotes the ℓρ-norm. A similar loss ℓforward
const

(θ, ϕ) is de-
fined for the reconstruction of z,

ℓforward
const

(θ, ϕ) ≜ Ep∗(z)[∥z−mϕ(µθ(z))∥
ρ
ρ]. (4.30)
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These objectives are summarised in the following set of optimisation
problems,

max
α

ℓreverse
gan

(α |ϕ), max
β

ℓforward
gan

(β | θ), (4.31a)

min
ϕ,θ

ℓreverse
gan

(ϕ | α) + ℓreverse
const

(θ, ϕ), (4.31b)

min
ϕ,θ

ℓforward
gan

(θ | β) + ℓforward
const

(θ, ϕ). (4.31c)

We now highlight the correspondences between these objectives and
those of our proposed vi framework, as summarised in the optimisa-
tion problems of Equations (4.14) and (4.26).

4.5.2 Cycle-consistency as Conditional Entropy Maximisation

We now demonstrate that minimising the cycle-consistency losses
corresponds to maximising the expected log likelihood and variational
posterior of Equations (4.6) and (4.23). This can be shown by instanti-
ating specific classes of pθ(x | z) and qϕ(z | x) that recover ℓreverse

const
(θ, ϕ)

and ℓforward
const

(θ, ϕ) from Lnell(θ, ϕ) and Lnelp(θ, ϕ), respectively.

Proposition 4.5.1. Consider a typical case where the likelihood and the
posterior approximation are both Gaussians,

pθ(x | z) ≜ N (x | µθ(z), τ−1I), qϕ(z | x) ≜ N (z |mϕ(x), t−1I).

In the limit as the posterior precision t tends to ∞, Lnell(θ, ϕ) approaches
ℓreverse

const
(θ, ϕ) for ρ = 2, up to constants1. More precisely,

Lnell(θ, ϕ)→ τ

2
Lreverse

const
(θ, ϕ) + const, as t→ ∞

Similarly, we have,

Lnelp(θ, ϕ)→ t
2
Lforward

const
(θ, ϕ) + const, as τ → ∞

Proof. First, note the generative mappings underlying the given Gaus-
sian likelihood and approximate posterior are

z ∼ pθ(x | z) ≜ N (x | µθ(z), τ−1I),

⇔ z = Fθ(ξ; z) ≜ µθ(z) + τ−
1
2 ξ, ξ ∼ N (0, I),

and,

x ∼ qϕ(z | x) ≜ N (z |mϕ(x), t−1I),

⇔ x = Gϕ(ϵ; x) ≜ mϕ(x) + t−
1
2 ϵ, ϵ ∼ N (0, I),

1 we obtain the same result for the case ρ = 1 by instead setting both the likelihood
and approximate posterior to be Laplace distributions.
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respectively. Thus, expanding out Lnell(θ, ϕ), we have

Lnell(θ, ϕ)

= Eq∗(x)qϕ(z | x)[− log pθ(x | z)]
= Eq∗(x)p(ϵ)[− log pθ(x | Gϕ(ϵ; x))]

=
τ

2
Eq∗(x)p(ϵ)[∥x− µθ(Gϕ(ϵ; x))∥2

2] +
D
2

log
2π

τ

=
τ

2
Eq∗(x)p(ϵ)[∥x− µθ(mϕ(x) + t−

1
2 ϵ)∥2

2] + const

→ τ

2
Eq∗(x)[∥x− µθ(mϕ(x))∥2

2] + const, as t→ ∞

=
τ

2
Lreverse

const
(θ, ϕ) + const.

A similar analysis can be carried out for Lnelp(θ, ϕ) and its determin-
istic counterpart ℓforward

const
(θ, ϕ).

Hence, the cycle-consistency losses can be seen as special cases of
the ell and elp with degenerate conditional distributions. Furthermore,
this sheds new light on the roles of the cycle-consistency losses. For
example, similar to the ell, the reverse consistency loss encourages
the conditional qϕ(z | x) to place its mass on configurations of latent
variables that can explain, or in this case, represent the data well.

4.5.3 Distribution Matching as Approximate Divergence Minimisation

We now discuss how the adversarial objectives ℓreverse
gan

(α |ϕ) and
ℓforward

gan
(β | θ) relate to the kl variational lower bounds of our frame-

work, Llatent
kl

(α |ϕ) and Lobserved
kl

(β | θ), respectively. To reduce clutter,
we restrict our discussion to the reverse objective ℓreverse

gan
(α |ϕ), as the

same reasoning readily applies to the forward ℓforward
gan

(β | θ).

4.5.3.1 As Density Ratio Estimation by Probabilistic Classification

Firstly, the connections between gans, divergence minimisation and
dre are well-established [177, 191, 251]. Although ℓreverse

gan
(α |ϕ) is a

scoring rule for probabilistic classification [85], one can readily show
that it can also be subsumed as an instance of the generalised varia-
tional lower bound Llatent

f (α |ϕ). Furthermore, similar to Llatent
kl

(α |ϕ),
maximising ℓreverse

gan
(α |ϕ) corresponds estimating the intractable den-

sity ratio r∗(z; x) of Equation (4.9).

Lemma 4.5.2. By setting fgan(u) = u log u− (u + 1) log(u + 1) in the
generalised objective Llatent

f (α |ϕ) of Equation (4.10), we instantiate the
objective

Lreverse
gan

(α |ϕ) ≜ Eq∗(x)p∗(z)[logDα(z; x)]

+ Eq∗(x)qϕ(z | x)[log(1−Dα(z; x))],
(4.32)

where Dα(z; x) ≜ 1− σ(log rα(z; x)), and σ is the logistic sigmoid function.
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Proof. To instantiate Lreverse
gan

(α |ϕ) of Equation (4.32), it suffices to
show that − f ∗

gan
( f ′

gan
(rα(z; x))) = logDα(z; x) and f ′

gan
(rα(z; x)) =

log(1−Dα(z; x)), where Dα(z; x) ≜ 1− σ(log rα(z; x)). First we com-
pute the first derivative f ′

gan
and the convex dual f ∗

gan
of fgan, which

involve straightforward calculations,

f ′
gan

(u) = log σ(log u), f ∗
gan

(t) = − log(1− exp t).

Thus, the composition ( f ∗
gan
◦ f ′

gan
) : u 7→ f ∗

gan
( f ′

gan
(u)) can be simpli-

fied as

f ∗
gan

( f ′
gan

(u)) = − log(1− exp f ′
gan

(u)) = − log(1− σ(log u)).

Applying f ′
gan

and f ∗
gan
◦ f ′

gan
to rα(z; x), we have

f ′
gan

(rα(z; x)) = log σ(log rα(z; x)) = log(1−Dα(z; x)),

and

f ∗
gan

( f ′
gan

(rα(z; x))) = − log(1− σ(log rα(z; x))) = − logDα(z; x),

respectively, as required.

Lemma 4.5.3. By specifying a discriminator Dα(z; x) = Dα(z) that ignores
auxiliary input x, and mapping Gϕ(ϵ; x) = mϕ(x) that ignores noise input
ϵ, Lreverse

gan
(α |ϕ) reduces to ℓreverse

gan
(α |ϕ).

Proof. Through reparameterisation of qϕ(z | x), we have

Lreverse
gan

(α |ϕ) = Eq∗(x)p∗(z)[logDα(z; x)]

+ Eq∗(x)p(ϵ)[log(1−Dα(Gϕ(ϵ; x); x))].

By specifying a discriminator Dα(z; x) = Dα(z) that ignores auxiliary
input x, and mapping Gϕ(ϵ; x) = mϕ(x) that ignores noise input ϵ,
this reduces to

Lreverse
gan

(α |ϕ) = Ep∗(z)[log Dα(z)] + Eq∗(x)[log(1−Dα(mϕ(x)))]

= ℓreverse
gan

(α |ϕ),

as required.

Proposition 4.5.4. The reverse adversarial objective ℓreverse
gan

(α |ϕ) can
be subsumed as an instance of the generalised variational lower bound
Llatent

f (α |ϕ).

Theorem 4.5.4 follows directly from Theorems 4.5.2 and 4.5.3.
Now, by Theorem 4.3.2, objective Lreverse

gan
(α |ϕ) is maximised ex-

actly when rα(z; x) = r∗(z; x). Hence, we can interpret Lreverse
gan

(α |ϕ)

as an objective for density-ratio estimation based on probabilistic
classification, while Llatent

kl
(α |ϕ) is an objective based on kliep.
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Now, the default choice of dm loss is Lreverse
gana

(ϕ | α) ≜ Lreverse
gan

(α |ϕ).
Omitting terms not involving ϕ, this is given by

Lreverse
gana

(ϕ | α) ≜ Eq∗(x)qϕ(z | x)[log(1−Dα(z; x))]. (4.33)

Unlike Llatent
kl

(ϕ | α), minimising Lreverse
gana

(ϕ | α) does not minimise the
kl divergence of Equation (4.8). Hence, the minimisation problem of
Equation (4.31b) does not correspond to that of Equation (4.14b), and
so does not maximise the elbo, or any known vi objective.

4.5.3.2 Recovering KL Through Alternative Divergence Minimisation Losses

Although the default choice of dm loss does not yield a tight corre-
spondence to vi, the existing cyclegan frameworks – and indeed
most gan-based approaches – arbitrarily select an alternative dm loss
that avoids vanishing gradients, and work well in practice. Hence, one
need only choose an alternative that does correspond to minimising
the kl divergence of Equation (4.8).

Firstly, of the cyclegan methods, Kim et al. [125] adopt the widely-
used dm loss originally suggested by Goodfellow et al. [86],

Lreverse
ganb

(ϕ | α) ≜ Eq∗(x)qϕ(z | x)[− logDα(z; x)], (4.34)

while [302] optimise the Least-Squares gan (lsgan) objectives of
[162].

Consider the combination of losses Lreverse
gana

(ϕ | α) and Lreverse
ganb

(ϕ | α),

Lreverse
ganc

(ϕ | α) ≜ Lreverse
gana

(ϕ | α) + Lreverse
ganb

(ϕ | α) (4.35)

= Eq∗(x)qϕ(z | x)

[
− log

Dα(z; x)
1−Dα(z; x)

]
.

Proposition 4.5.5. We have Lreverse
ganc

(ϕ | α) = Llatent
kl

(ϕ | α).

Theorem 4.5.5 was originally noted by Sønderby et al. [239] and is
shown below.

Proof. Expanding out Lreverse
ganC

(ϕ | α), we have

Lreverse
ganC

(ϕ | α) = Eq∗(x)qϕ(z | x)

[
− log

Dα(z; x)
1−Dα(z; x)

]

= Eq∗(x)qϕ(z | x)

[
log

σ(log rα(z; x))
1− σ(log rα(z; x))

]

= Eq∗(x)qϕ(z | x)[log rα(z; x)] ≜ Llatent
kl

(ϕ | α).

Hence, Lreverse
ganC

(ϕ | α) = Llatent
kl

(ϕ | α) as required.

Thus, for the setting of the dm loss Lreverse
ganc

(ϕ | α), the minimisation
problem of Equation (4.31b) corresponds to that of Equation (4.14b),
and thus maximises the elbo. This is equivalent to fitting the den-
sity ratio estimator rα(z; x) by maximising the objective Lreverse

gan
(α |ϕ)
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instead of Llatent
kl

(α |ϕ), and plugging it back into Llatent
kl

(ϕ | α) to ap-
proximately minimise the kl divergence of Equation (4.8). Such an
approach is prevalent among existing implicit vi methods [110, 172,
202, 267]

summary of theoretical connections We have that the
cycle-consistency losses are a specific instance of the ell and elp,
while the adversarial objectives are a specific instance of the variational
lower bound for divergence estimation, the maximisation of which
can be seen as density ratio estimation by probabilistic classification.
By explicitly setting the corresponding divergence minimisation loss
such that it leads to minimisation of the required kl divergence terms
in the elbo and aplbo, we subsume the cyclegan model under our
proposed vi framework. See Section 4.B for a succinct summary of the
relationships.

4.6 related work

The work presented in this chapter is closely related to prior efforts
to extend the scope of vi to implicit distributions. A recurring theme
throughout this line of work is approximation of the elbo by exploiting
the formal connection between density-ratio estimation and gans [177,
271]. The major axis of variation lies in the choice of the target density
ratio being estimated, as dictated by the problem setting. Makhzani et
al. [160] and Mescheder, Nowozin, and Geiger [172, avb] estimate the
density ratio qϕ(z | x)/p(z) in order to allow for expressive sample-based
posterior approximations qϕ(z | x). This corresponds to the reverse kl

minimisation component of our approach, in which we accomodate
implicit priors p(z).

Similar to bigan [62] and adversarially learned inference (ali) [59],
Tran, Ranganath, and Blei [267, lfvi] match a variational joint to an
exact joint distribution by estimating the density ratio pθ(x,z)/qϕ(x,z) and
use it to approximately minimise the kl divergence. Although this
formulation sidesteps the requirement of having any tractable densities,
their focus is on inference for models with intractable likelihoods
pθ(x | z) and on incorporating the implicit posteriors à la avb. In
constrast, in our framework, the joint’s intractability instead stems
from the implicit prior p∗(z). While we also approximate the exact
joint, we do so by minimising a symmetric kl divergence. Furthermore,
since both pθ(x | z) and qϕ(z | x) are prescribed, we evaluate them
explicitly as part of our loss functions and estimate a different set of
density ratios. This closely resembles the approach of Pu et al. [202],
which also minimises the symmetric kl divergence between the joints.
However, the focus of their method is not on implicit distributions
and thus specifies a different set of losses than ours – one that requires
solving more complicated density ratio estimation problems. More
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importantly, their method does not yield a tight correspondence to
cyclegan models.

A consequence of solely minimising the forward kl (as in frame-
works like ali) rather then minimising the symmetric kl (as in our
framework) is non-identifiability. This issue has been addressed by Li
et al. [144] who proposed a conditional-entropy regulariser to ali’s ob-
jective. Although Li et al. [144] examine the link between their method
and cyclegan, unlike our work, the relationship is not made ex-
plicit in a mathematically precise manner. Additionally, we derive our
full objective from the perspective of approximate Bayesian inference.
More recently, Chen et al. [31] also highlight issues associated with
ali concerning the quality of data generated from the inferred latent
variables. They propose a symmetric vae that simultaneously inherits
the realistic image generation capabilities of adversarial approaches
while overcoming the asymmetry limitations of the forward kl diver-
gence inherent in standard vaes. Additionally, unlike our approach,
they do not provide an explicit relationship with cyclegans.

Finally, similar to InfoGAN [35] and veegan [245], the forward kl

minimisation component of our method also optimises a model of the
latent variables, which is reminiscent of the wake-sleep algorithm for
training Helmholtz machines [52]. This is discussed further by Hu et al.
[109], who provide a comprehensive treatment of the links between
the work mentioned in this section and importantly, the symmetric
perspective of generation and recognition that underpins our approach.

4.7 experiments

synthetic data . First we consider the problem of reducing the
dimensionality of the mnist dataset to a 2D latent space, wherein
the prior distribution on the latent representations is specified by its
samples (shown in Figure 4.2a). This “banana-shaped distribution”
is a commonly used testbed for adaptive mcmc methods [93, 264].
Its samples can be generated by drawing from a bivariate Gaussian
with unit variances and correlation ρ = 0.95, and transforming them
through mapping H(z1, z2) ≜ [z1, z2 − z2

1 − 1]T. While the density of
this distribution can be computed, it is withheld from our algorithm
and used only in the vae baseline, which does not permit implicit
distributions.

Qualitative and quantitative results are given Figure 4.2 and Ta-
ble 4.1, which demonstrate superior performance to competing ap-
proaches. Observe that instances of the various digit classes are disen-
tangled in this latent space, while still closely matching the shape of
the prior distribution, despite having only access to its samples. The
resulting manifold of reconstructions is depicted in Figure 4.2c.

In Table 4.1, we report the mean-squared error (mse) on the recon-
structions of observations from the held-out test set and benchmark
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Table 4.1: Mean-squared errors of reconstructions.

Method mse z mse x

sjmvi (ours) 0.17 0.04

vae [127] 0.88 0.04

avb [172] 0.29 0.04

against vae / avb. Also, for the joint approximation to properly match
the support of the exact joint, the latent codes should also be rep-
resentable by its corresponding observation. Hence, we also report
the mse between samples from the prior and their reconstructions.
While we find no improvements on reconstruction quality of observa-
tions, our method significantly outperforms others in reconstructing
latent codes, suggesting our method has greater capacity to faithfully
approximate the exact joint.
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Figure 4.2: Visualisation of 2D latent space and the corresponding observed
space manifold.Instances of the various digit classes are disentan-
gled in this latent space, while still closely matching the shape of
the prior distribution, despite having only access to its samples .

image-to-image translation. We apply our method to the
task of transferring features between images of faces on the CelebA
dataset [152]. We consider the case where one feature differs between
domains. In particular, distributions q∗(x) and q∗(z) are specified by
images of women with blond and black hair, respectively. We spec-
ify both pθ(x | z) and qϕ(z | x) as a Laplace distribution, with fixed
variance, and mean functions µθ(z) and mϕ(x) defined by neural net-
works. Their architectures, as well as those of discriminators Dα(z; x)
and Dβ(x; z) are defined in the same way as in [302]. In Figure 4.3, we
show the outputs of the mean functions on samples from a hold-out
test set, after training for 10 epochs. From Figure 4.3b, we see that
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given datapoints x (top) we’re able to learn a posterior over latent
representations z in the other domain (mean is shown in middle).
Furthermore, these latent representations are configured so as to max-
imise the likelihood of observing the original data, as evident from the
reconstructions (bottom). Refer to appendix Figure 4.4 for qualitative
results produced by the cyclegan baseline approach [125, 302].
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(a) Samples from the prior (top), mean of the likelihood (middle), and the mean
reconstruction (bottom).
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(b) Samples from the data (top), mean of the posterior (middle), and the mean
reconstruction (bottom).

Figure 4.3: Image-to-image translation (blond to black hair) on CelebA
dataset [152] performed by our proposed approach.

4.8 summary

In this chapter, we’ve provided a theoretical treatment of the link
between cyclegans and approximate Bayesian inference. In short,
samples from the two domains correspond respectively to those drawn
from the data and implicit prior distribution in a implicit lvm (ilvm).
Parameter learning in cyclegans corresponds to approximate infer-
ence in this ilvm under our proposed vi framework. The forward and
reverse mappings in cyclegans arise naturally in the generative and
recognition models, while the cycle-consistency constraints correspond
to their log probabilities, and the adversarial losses are approxima-
tions to an f -divergence. By lifting the limitations of prescribed prior
distributions in favour of arbitrarily flexible implicit distributions, we
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(a) Samples from the prior (top), output of mapping (middle), and the reconstruction
(bottom).
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(b) Samples from the data (top), output of mapping (middle), and the reconstruction
(bottom).

Figure 4.4: Image-to-image translation (blond to black hair) on CelebA
dataset [152] performed by the baseline cyclegan method.

can discover different perspectives on existing learning methods and
provide more flexible approaches to probabilistic modelling.





A D D E N D U M

4.a relation to kl importance estimation procedure

(kliep)

We now discuss the connections to kliep [250]. Consider the same
problem setting as in Section 4.3.3 where we wish to use a parame-
terised function rα to estimate the exact density ratio,

rα(z; x) ≈ r∗(z; x) ≜
qϕ(z | x)

p∗(z)
.

We can view rα(z; x) as the correction factor required for p∗(z) to
match qϕ(z | x). This gives rise to an estimator of qϕ(z | x),

qα(z | x) ≜ rα(z; x)p∗(z) ≈ qϕ(z | x).

Although in our specific problem setting, the density qϕ(z | x) is
tractable, we nonetheless fit an auxiliary model qα(z | x) to it as a
means of fitting the underlying density ratio estimator rα(z; x).

In particular, consider minimising the kl divergence between qϕ(z | x)
and qα(z | x) with respect to α,

Eq∗(x)kl

[
qϕ(z | x) ∥ qα(z | x)

]

≜ Eq∗(x)Eqϕ(z | x)

[
log

qϕ(z | x)
qα(z | x)

]
,

= Eq∗(x)Eqϕ(z | x)

[
log

qϕ(z | x)
p∗(z)rα(z; x)

]
,

= −Eq∗(x)Eqϕ(z | x)[log rα(z; x)] + const.

Hence, this is equivalent to maximising

Eq∗(x)Eqϕ(z | x)[log rα(z; x)].

Now, for the conditional qα(z | x) to be a probability density function,
its integral must sum to one,

∫
qα(z | x)q∗(x)dxdz = 1.

Rewriting this integral, we have the constraint
∫

qα(z | x)q∗(x)dxdz =
∫

rα(z; x)p∗(z)q∗(x)dxdz

= Eq∗(x)p∗(z)[rα(z; x)] = 1.
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Table 4.B.1: Relevant latent and observed space f -divergences instantiated
for particular settings of f .

Reverse kl gan

f (u) u log u u log u− (u + 1) log(u + 1)

Latent Eq∗ (x)D f
[
p∗(z) ∥ qϕ(z | x)

]
Eq∗ (x)kl

[
qϕ(z | x) ∥ p∗(z)

]
2 ·Eq∗ (x)Djs

[
p∗(z) ∥ qϕ(z | x)

]
− log 4

Observed Ep∗ (z)D f [q
∗(x) ∥ pθ(x | z)] Ep∗ (z)kl [pθ(x | z) ∥ q∗(x)] 2 ·Ep∗ (z)Djs [q∗(x) ∥ pθ(x | z)]− log 4

Combined, we have the following constrained optimisation problem,

max
α

Eq∗(x)Eqϕ(z | x)[log rα(z; x)]

subject to Eq∗(x)p∗(z)[rα(z; x)− 1] = 0.

Through the method of Lagrange multipliers, this can be cast as an
unconstrained optimisation problem with objective,

Llatent
kliep

(α |ϕ) ≜ Eq∗(x)Eqϕ(z | x)[log rα(z; x)]

− λEq∗(x)p∗(z)[rα(z; x)− 1],

where λ is the Lagrange multiplier. For λ = 1, Llatent
kliep

(α |ϕ) trivially
reduces to Llatent

kl
(α |ϕ).

4.b summary of definitions

In this section, we summarise the definitions of the losses defined in
the proposed vi framework of Sections 4.3 and 4.4, and underscore
the relationships to their respective counterparts in the cyclegan

framework of Section 4.5.
Table 4.B.1 summarises the settings of convex function f : R+ → R

that recover the reverse kl divergence terms within the elbo and
aplbo, and the js divergence (up to constants) that gans are known to
minimise.

Table 4.B.2 gives the calculations of the terms necessary to explicitly
write down instances of the generalised variational lower bound for
particular convex functions f – namely the convex dual f ⋆, the first
derivative f ′ and the composition f ⋆ ◦ f ′.

Table 4.B.3 gives instances of the variational lower bound that ap-
proximate the latent and observed space kl divergences within the
elbo and aplbo, respectively. Additionally, it gives generalised stochas-
tic formulations of the gan objectives in the cyclegan framework,
while Table 4.B.4 lists their deterministic counterpart.

Lastly, Table 4.B.5 gives forward and reverse cycle-consistency con-
straints in the cyclegan framework, and the specific class of Gaussian
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Table 4.B.2: Calculations for convex functions.

Reverse kl gan

f (u) u log u u log u− (u + 1) log(u + 1)

f ⋆(t) exp(t− 1) − log(1− exp t)

f ′(u) 1 + log u log σ(log u)

f ⋆( f ′(u)) u − log(1− σ(log u))

Table 4.B.3: Instances of variational lower bounds on the relevant latent and
observed space f -divergences.

Reverse kl gan

f (u) u log u u log u− (u + 1) log(u + 1)

Latent

Llatent
f (α |ϕ) ≜ Eq∗ (x)qϕ (z | x) [ f ′(rα(z; x))]

−Eq∗ (x)p∗ (z) [ f ⋆( f ′(rα(z; x)))]

Llatent
kl

(α |ϕ) ≜ Eq∗ (x)qϕ (z | x) [log rα(z; x)]

−Eq∗ (x)p∗ (z) [rα(z; x)− 1]

Lreverse
gan

(α |ϕ) ≜ Eq∗ (x)qϕ (z | x) [log σ(log rα(z; x))]

+ Eq∗ (x)p∗ (z) [log(1− σ(log rα(z; x)))]

Observed

Lobserved
f (β | θ) ≜ Ep∗ (z)pθ(x | z) [ f ′(rβ(x; z))]

−Ep∗ (z)q∗ (x) [ f ⋆( f ′(rβ(x; z)))]

Lobserved
kl

(β | θ) ≜ Ep∗ (z)pθ(x | z) [log rβ(x; z)]

−Ep∗ (z)q∗ (x) [rβ(x; z)− 1]

Lforward
gan

(β | θ) ≜ Ep∗ (z)pθ(x | z) [log σ(log rβ(x; z))]

+ Ep∗ (z)q∗ (x) [log(1− σ(log rβ(x; z)))]

likelihoods and posteriors that instantiates these constraints (in the
limit).
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Table 4.B.4: General stochastic gan objectives and their deterministic coun-
terparts.

Stochastic Deterministic

reverse

Lreverse
gan

(α |ϕ) ≜ Eq∗ (x)p∗ (z) [logDα(z; x)]

+ Eq∗ (x)p(ϵ) [log(1−Dα(Gϕ(ϵ; x); x))]

ℓreverse
gan

(α |ϕ) ≜ Ep∗ (z) [log Dα(z)]

+ Eq∗ (x) [log(1−Dα(mϕ(x)))]

forward

Lforward
gan

(β | θ) ≜ Ep∗ (z)q∗ (x) [logDβ(x; z)]

+ Ep∗ (z)p(ξ) [log(1−Dβ(Fθ(ξ; z); z))]

ℓforward
gan

(β | θ) ≜ Eq∗ (x) [log Dβ(x)]

+ Ep∗ (z) [log(1−Dβ(µθ(z)))]

Table 4.B.5: Negative expected log conditionals and the cycle-consistency
constraints.

Gaussian Degenerate

pθ(x | z) qϕ(z | x) pθ(x | z) qϕ(z | x)

N (x | µθ(z), τ−1I) N (z |mϕ(x), t−1I) δ(x− µθ(z)) δ(z−mϕ(x))

Lnell(θ, ϕ) ≜
τ

2
Eq∗ (x)p(ϵ) [∥x− µθ(mϕ(x) + t−

1
2 ϵ)∥2

2 ] +
D
2

log
2π

τ
ℓreverse

const
(θ, ϕ) ≜ Eq∗ (x) [∥x− µθ(mϕ(x))∥2

2 ]

Lnelp(θ, ϕ) ≜
t
2

Ep∗ (z)p(ξ) [∥z−mϕ(µθ(z) + τ
− 1

2 ξ)∥2
2 ] +

K
2

log
2π

t
ℓforward

const
(θ, ϕ) ≜ Ep∗ (z) [∥z−mϕ(µθ(z))∥2

2 ]
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preface

This chapter is derived from work previously published as:
Louis C Tiao et al. “BORE: Bayesian Optimization by Density-Ratio

Estimation”. In: Proceedings of the 38th International Conference on Ma-
chine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Pro-
ceedings of Machine Learning Research. PMLR, July 2021, pp. 10289–
10300. url: https://proceedings.mlr.press/v139/tiao21a.html.
(Accepted as Oral presentation).

Additional context, analysis, and discussion has been included to
address the intricacies of how density-ratios relate to the probability
of improvement (pi) and expected improvement (ei), and to examine
the extension to this work known as likelihood-free bo (lfbo) [241].

5.1 introduction

We introduced Bayesian optimisation (bo) in Section 2.5 as a highly
effective approach for the global optimisation of expensive blackbox
functions [20, 228]. In particular, we saw how bo proposes candidate
solutions according to an acquisition function that encodes a degree of
balance between exploration and exploitation. At the heart of bo lies a
probabilistic surrogate model from which the acquisition function is
derived.

Among the many acquisition functions that have been devised,
the improvement-based ones, such as the pi and ei [117, 176] have
remained prevalent due in large to their effectiveness despite their
relative simplicity. Notably, while acquisition functions are generally
challenging to compute, let alone optimise [290], pi/ei offers a closed-
form expression when the posterior predictive density of the model
follows a Gaussian distribution. However, while this condition makes
these acquisition functions easier to work with, it can also preclude
the use of richer families of models, as one must ensure analytical
tractability of the predictive, often at the expense of expressiveness, or
otherwise by resorting to sampling-based approximations [7].

By virtue of its flexibility, desirable conjugacy properties, and ability
to produce well-calibrated predictive uncertainty, gp regression [286]
is a widely-used probabilistic model in bo. To extend gp-based bo

to problems with discrete variables [77], structures with conditional
dependencies [116], or to capture nonstationary phenomenon [238], it
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Figure 5.1: Optimising a synthetic function f (x) = sin(3x) + x2 − 0.7x with
observation noise ε ∼ N (0, 0.22). In the main pane, the noise-free
function is represented by the solid gray curve, and N = 27 noisy
observations are represented by the crosses ‘×’. Observations with
output y in the top-performing γ = 1/3 proportion are shown
in red; otherwise, they are shown in blue. Their corresponding
densities, ℓ(x) and g(x), respectively, are shown in the top pane.
Bayesian optimisation by density-ratio estimation (bore) exploits
the correspondence between the pi acquisition function and the
ratio of densities ℓ(x)/g(x).

is common to apply simple modifications to the covariance function,
as this can often be done without compromising the tractability of the
predictive. Suffice it to say, certain estimators, such as decision trees
in the case of discrete variables, are naturally better equipped to deal
with these scenarios. Indeed, to scale bo to problem settings that pro-
duce vast numbers of observations, such as in transfer learning [255],
existing approaches have resorted to alternative model families like
random forests (rfs) [111] and bnns [200, 237, 243]. However, these
are often bound by constraints and simplifying assumptions, or must
rely on Monte Carlo (mc) methods that make the acquisition function
more cumbersome to evaluate and optimise.

Recognising that the surrogate model primarily serves as a means to
construct the acquisition function, we shift the usual focus away from
the model and toward the acquisition function itself. To this end, we
seek an alternative formulation of the acquisition function, specifically,
one that potentially opens the door to more powerful estimators for
which the predictive density would otherwise be unwieldy or simply
intractable to compute. In particular, Bergstra et al. [14] demonstrate
that the pi function1 can be expressed as the relative ratio between two
densities [292]. To estimate this ratio, they propose a method known as
the tpe, which naturally handles discrete and tree-structured inputs,

1 In fact, they make the stronger claim that this holds true for ei, but this assertion
could be considered the outcome of spurious mathematical reasoning [75] – we
elaborate on these intricacies in Section 5.2.2.2.
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and scales linearly with the number of observations. However, in spite
of its many advantages, tpe is not without deficiencies.

In the work summarised in this chapter, we make the following
contributions: (i) We revisit the tpe approach from first principles
and identify its shortcomings in tackling the general dre problem
(Section 5.2). (ii) We propose a simple yet powerful alternative that
casts the computation of pi as probabilistic classification (Section 5.3).
This approach is built on the aforementioned link between pi and the
relative density-ratio, and the correspondence between dre and cpe.
As such, it retains the strengths of the tpe method while mitigating
many of its weaknesses. Perhaps most significantly, it enables one to
leverage virtually any state-of-the-art classification method available.
In Section 5.5, we demonstrate through extensive experiments that
our approach competes well with these methods on a diverse range of
problems.

5.2 optimisation policies and density-ratio estimation

5.2.1 Relative Density-Ratio

We introduced the ordinary density-ratio earlier in Section 2.3. Now let
us generalise this to what is commonly known as the relative density-
ratio [292]. Namely, for a given pair of densities ℓ(x) and g(x), their
γ-relative density-ratio is defined as

rγ(x) ≜
ℓ(x)

γℓ(x) + (1− γ)g(x)
, (5.1)

where γℓ(x) + (1− γ)g(x) denotes the γ-mixture density with mixing
proportion 0 ≤ γ < 1. Note that for γ = 0, we recover the ordinary
density-ratio, which we denote r0(x) ≜ ℓ(x)/g(x). Further, observe that
the relative ratio is related to the ordinary ratio, rγ(x) = hγ(r0(x)),
where

hγ(u) ≜
(

γ + u−1(1− γ)
)−1

for u > 0.

5.2.2 Improvement-based Acquisition Functions

We now discuss how the improvement-based acquisition functions
introduced in Section 2.5.2 relate to the ratio in Equation (5.1). First,
let the threshold τ be the γ-th quantile of the observed y values,
τ ≜ Φ−1(γ) where γ = Φ(τ) ≜ p(y ≤ τ;DN). Thereafter, let the
pair of densities be defined as ℓ(x) ≜ p (x | y ≤ τ;DN) and g(x) ≜
p (x | y > τ;DN). An illustrated example of this is shown in Figure 5.1.
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5.2.2.1 Probability of Improvement as a Density-Ratio

Recall from Section 2.5.2.1 that the pi criterion can be expressed as
αPI(x;DN , τ) = p(y ≤ τ | x,DN). By Bayes’ rule, we have

αPI(x;DN , τ) =
p(x | y ≤ τ;DN)p(y ≤ τ | DN)

p(x | DN)
.

By definition, the numerator is simply

p(x | y ≤ τ;DN)p(y ≤ τ | DN) = γ · ℓ(x),

while, similarly, the denominator is

p(x | DN) =
∫ ∞

−∞
p(x | y,DN)p(y | DN)dy

= ℓ(x)
∫ τ

−∞
p(y | DN)dy + g(x)

∫ ∞

τ
p(y | DN)dy

= γℓ(x) + (1− γ)g(x). (5.2)

Hence, the pi function can be expressed as the relative density-ratio,
up to a constant factor γ,

αPI

(
x;DN , Φ−1(γ)

)
∝ rγ(x). (5.3)

Crucially, this reduces the problem of maximising pi to that of max-
imising the relative density-ratio,

xN+1 = arg max
x∈X

αPI

(
x;DN , Φ−1(γ)

)
= arg max

x∈X
rγ(x). (5.4)

To estimate the unknown relative density-ratio, one can appeal to a
wide variety of approaches from the dre literature [251]. We broadly
refer to this strategy as Bayesian optimisation by density-ratio estima-
tion (bore).

5.2.2.2 Expected Improvement as a Density-Ratio?

Bergstra et al. [14] assert that, under certain additional assumptions,
the ei function can similarly be expressed as the relative density-ratio
up to some constant factor. It goes without saying that this directly
contradicts the results we have just presented, since clearly pi and ei

are by definition not equivalent.
This particular issue has sparked recent discussions, and we anal-

yse the arguments here. We proceed by reproducing the original
derivations of Bergstra et al. [14]. Recall from Equation (2.45) that the
ei function is defined as the expectation of the improvement utility



5.2 optimisation policies and density-ratio estimation 101

function UEI(y, τ) over the posterior predictive density p(y | x,DN).
Expanding this out, we have

αEI(x;DN , τ) ≜ Ep(y | x,DN)[UEI(y, τ)]

=
∫ ∞

−∞
UEI(y, τ)p(y | x,DN)dy

=
∫ τ

−∞
(τ − y)p(y | x,DN)dy

=
1

p(x | DN)

∫ τ

−∞
(τ − y)p(x | y,DN)p(y | DN)dy.

We’ve already simplified the denominator p(x | DN) in Equation (5.2),
and the numerator simplifies to

∫ τ

−∞
(τ − y)p(x | y,DN)p(y | DN)dy

≈ ℓ(x)
∫ τ

−∞
(τ − y)p(y | DN)dy (5.5)

= ℓ(x)
(

τ
∫ τ

−∞
p(y | DN)dy−

∫ τ

−∞
yp(y | DN)dy

)

= K · ℓ(x),

where
K ≜ γτ −

∫ τ

−∞
yp(y | DN)dy.

In contrast with the original derivation, there is not a strict equality
in Equation (5.5) because, in general, p(x | y,DN) ̸= p(x|y ≤ τ;DN) =

ℓ(x). That is to say, the conditional p(x | y,DN) is not constant wrt to
y. While Garnett [75] perceives this as a “minor mathematical error”
on the part of Bergstra et al. [14], it may also be intepreted as a strong
simplifying modelling assumption. Specifically, the assumption states
that p(x | y,DN) is piecewise constant where p(x | y,DN) = ℓ(x) for
y ≤ τ. This approximation is not unreasonable, especially when τ is
in close proximity to the global minimum y∗.

The interested reader is referred to the issues thread on the public
GitHub repository associated with the bo textbook by Garnett [75]
for further discussion. The discourse is further extended by Song and
Ermon [240] who subsequently proposed an alternative method [241]
that encompasses, in a stricter sense, both pi/ei, and, more generally,
any acquisition function that assumes the form of the expected utility
in Equation (2.45). The approach is named likelihood-free bo (lfbo)
by virtue of its ability to sidestep the cumbersome calculations that
such acquisition functions often entail. As we shall see in Section 5.3.3,
lfbo is similar to bore in spirit, but distinct in a few mathematical
particulars.

https://github.com/bayesoptbook/bayesoptbook.github.io/issues/10
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Figure 5.2: Gaussian densities (left) and their γ-relative density-ratios (right),
which diverges when γ = 0 and converges to 4 when γ = 1/4.

5.2.3 Tree-structured Parzen Estimator

The tree-structured Parzen estimator (tpe) [14] is an instance of the
bore framework that seeks to solve the optimisation problem of Equa-
tion (5.4) by taking the following approach:

1. Since rγ(x) = hγ(r0(x)) where hγ is strictly non-decreasing,
focus instead on maximising2 r0(x),

x∗ = arg max
x∈X

r0(x).

2. Estimate the ordinary density-ratio r0(x) by separately estimat-
ing its constituent numerator ℓ(x) and denominator g(x), using
a tree-based variant of kde [233].

It is not hard to see why tpe might be favorable compared to methods
based on gp regression – one now incurs an O(N) computational cost
as opposed to the O(N3) cost of gp posterior inference. Furthermore,
it is equipped to deal with tree-structured, mixed continuous, ordered,
and unordered discrete inputs. In spite of its advantages, tpe is not
without shortcomings.

5.2.4 Potential Pitfalls

The shortcomings of this approach are already well-documented in
the dre literature [251]. Nonetheless, we reiterate here a select few
that are particularly detrimental in the context of global optimisation.
Namely, the first major drawback of tpe lies within step 1:

singularities . Relying on the ordinary density-ratio can result
in numerical instabilities since it is unbounded – often diverging to

2 r0(x) denotes γ = 0 solely in rγ(x) of Equation (5.1) – it does not signify threshold
τ ≜ Φ−1(0), which would lead to density ℓ(x) containing no mass. We address this
subtlety in Section 5.A.
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infinity, even in simple toy scenarios (see Figure 5.2 for a simple
example). In contrast, the γ-relative density-ratio is always bounded
above by γ−1 when γ > 0 [292]. The other potential problems of tpe

lie within step 2:

vapnik’s principle . Conceptually, independently estimating the
densities is actually a more cumbersome approach that violates Vap-
nik’s principle – namely, that when solving a problem of interest, one
should refrain from solving a more general problem as an interme-
diate step [273]. In this instance, density estimation is a more general
problem that is arguably more difficult than density-ratio estimation
[123].

kernel bandwidth . kde depends crucially on the selection of
an appropriate kernel bandwidth, which is notoriously difficult [196,
229]. Furthermore, even with an optimal selection of a single fixed
bandwidth, it cannot simultaneously adapt to low- and high-density
regions [256].

error sensitivity. These difficulties are exacerbated by the fact
that one is required to select two bandwidths, whereby the optimal
bandwidth for one individual density is not necessarily appropriate
for estimating the density-ratio – indeed, it may even have deleterious
effects. This also makes the approach unforgiving to misspecification
of the respective estimators, particularly in that of the denominator
g(x), which has a disproportionately large influence on the resulting
density-ratio.

curse of dimensionality. For these reasons and more, kde

often falls short in high-dimensional regimes. In contrast, direct dre

methods have consistently been shown to scale better with dimension-
ality [250].

optimisation. Ultimately, we care not only about estimating the
density-ratio, but also optimising it wrt to inputs for the purpose of
candidate suggestion. Being nondifferentiable, the ratio of tpes is
cumbersome to optimise.

5.3 bayesian optimisation by probabilistic classifica-
tion

We propose a different approach to bore, importantly, one that circum-
vents the issues of tpe, by seeking to directly estimate the unknown
ratio rγ(x).

As we alluded to in Section 2.3, there exists a multitude of direct dre

methods. Here, we focus on the conceptually simple and widely-used
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method based n class-probability estimation (cpe) [15, 37, 170, 203,
251], which we first introduced in Section 2.3.2. In this section, we
extend the analysis to the more general case of the relative density-ratio,
and to settings in which the classification problem is unbalanced.

First, let π(x) = p(z = 1 | x) denote the class-posterior probability,
where z is the binary class label

z ≜





1 if y ≤ τ,

0 if y > τ.

By definition, we have ℓ(x) = p(x | z = 1) and g(x) = p(x | z = 0). We
plug these into Equation (5.1) and apply Bayes’ rule, letting the p(x)
terms cancel each other out to give

rγ(x) =
p(z = 1 | x)

p(z = 1)

(
γ · p(z = 1 | x)

p(z = 1)
+ (1− γ) · p(z = 0 | x)

p(z = 0)

)−1

(5.6)
Since, by definition, p(z = 1) = γ, Equation (5.6) simplifies to

rγ(x) = γ−1π(x). (5.7)

Refer to Section 5.B for derivations. Thus, Equation (5.7) establishes the
link between the class-posterior probability and the relative density-
ratio. In particular, the latter is equivalent to the former up to constant
factor γ−1.

The astute reader will recognise from Equation (5.3) that, in fact,

αPI

(
x;DN , Φ−1(γ)

)
= γ · rγ(x) = π(x).

Therefore, maximising the pi criterion amounts to maximising the
class-posterior probability π(x), which we can estimate using a prob-
abilistic classifier – a function πθ : X → [0, 1] parameterised by θ.
To recover the true class-posterior probability, we minimise a proper
scoring rule [85] such as the log loss

L̂(θ) ≜ − 1
N

(
N

∑
n=1

zn log πθ(xn)
N

∑
n=1

+ (1− zn) log (1− πθ(xn))

)
.

(5.8)
Thereafter, we can use πθ(x) as a proxy to the pi criterion,

πθ(x) ≈ αPI

(
x;DN , Φ−1(γ)

)
(5.9)

where the approximation is tight at θ∗ = arg minθ L̂(θ). Note L̂ is
an unbiased estimate of the log loss L that first appeared in Equa-
tion (5.13). Refer to Section 5.C for details.

Hence, in the so-called bo loop (summarised in Algorithm 2), we
alternately optimise (i) the classifier parameters θ wrt to the log loss
(to improve the approximation of Equation (5.9); Line 6), and (ii) the



5.3 bayesian optimisation by probabilistic classification 105

Algorithm 2: Bayesian optimisation by density-ratio estimation
(bore).

Input: blackbox f : X → R, proportion γ ∈ (0, 1), probabilistic
classifier πθ : X → [0, 1].

1 while under budget do
2 τ ← Φ−1(γ) // compute γ-th quantile of {yn}N

n=1

3 zn ← I[yn ≤ τ] for n = 1, . . . , N // assign labels

4 D̃N ← {(xn, zn)}N
n=1 // construct auxiliary dataset

5 /* update classifier by optimising parameters θ wrt log loss */

6 θ∗ ← arg minθ L̂(θ) // depends on D̃N , see Equation (5.8)

7 /* suggest candidate by optimising input x wrt classifier */

8 xN ← arg maxx∈X πθ∗(x) // see Equation (5.9)

9 yN ← f (xN) // evaluate blackbox function

10 DN ← DN−1 ∪ {(xN , yN)} // update dataset

11 N ← N + 1
12 end

classifier input x wrt to its output (to suggest the next candidate to
evaluate; Line 8).

In traditional gp-based pi, Line 8 typically consists of maximising
the pi criterion expressed in the form of Equation (2.48), while Line 6

consists of optimising the gp hyperparameters wrt the marginal like-
lihood. By analogy with our approach, the parameterised function
πθ(x) is itself an approximation to the pi criterion to be maximised
directly, while the approximation is tightened through by optimising
the classifier parameters wrt the log loss. In short, we have reduced
the problem of computing pi to that of learning a probabilistic classi-
fier, thereby unlocking a broad range of estimators beyond those so
far used in bo. Importantly, this enables one to employ virtually any
state-of-the-art classification method available and to parameterise
the classifier using arbitrarily expressive approximators that poten-
tially have the capacity to deal with non-linear, non-stationary, and
heteroscedastic phenomena frequently encountered in practice.

toy 1d example . To illustrate, in Figure 5.3, we animate Algo-
rithm 2 step by step on a synthetic problem for a half dozen iterations.
Specifically, we minimise the forrester function

f (x) ≜ (6x− 2)2 sin (12x− 4),

in the domain x ∈ [0, 1] with observation noise ε ∼ N (0, 0.052). The
algorithm is started with 4 random initial designs. Each subfigure
depicts the state after Lines 6 and 8 – namely, after updating and
maximising the classifier, respectively. In every subfigure, the main
pane depicts the noise-free function, represented by the solid gray
curve, and the set of observations, represented by crosses ‘×’. The
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location that was evaluated in the previous iteration is highlighted
with a gray outline. The right pane shows the empirical cdf (ecdf)
of the observed y values. The vertical dashed black line in this pane is
located at γ = 1

4 . The horizontal dashed black line is located at τ, the
value of y such that Φ(y) = 1

4 , i. e., τ = Φ−1 ( 1
4

)
. The instances below

this horizontal line are assigned binary label z = 1, while those above
are assigned z = 0. This is visualised in the bottom pane, alongside
the probabilistic classifier πθ(x), represented by the solid gray curve.
Finally, the maximiser of the classifier is represented by the vertical
solid green line – this denotes the location to be evaluated in the next
iteration.
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Figure 5.3: Step-by-step animation of Algorithm 2 on the forrester synthetic
problem.

5.3.1 Choice of Proportion γ

The proportion γ ∈ (0, 1) influences the explore-exploit trade-off.
Intuitively, a smaller setting of γ encourages exploitation and leads
to fewer modes and sharper peaks in the acquisition function. To see
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this, consider that there are by definition fewer candidate inputs x for
which its corresponding output y can be expected to improve over
the first quartile (γ = 1/4) of the observed output values than, say, the
third quartile (γ = 3/4). That being said, given that the class balance
rate is by definition γ, a value too close to 0 may lead to instabilities
in classifier learning. A potential strategy to combat this is to begin
with a perfect balance (γ = 1/2) and then to decay γ as optimisation
progresses.

In this work, we keep γ fixed throughout optimisation, which, on
the other hand, has the benefit of providing guarantees about how the
classification task evolves. In particular, in each iteration, after having
observed a new evaluation, we are guaranteed that the binary label of
at most one existing instance can flip. This property can be exploited
to make classifier learning of Line 6 more efficient. More specifically,
assuming the proportion γ is fixed across iterations, then, in each
iteration, we are guaranteed the following changes:

1. a new input and its corresponding output (xN , yN) will be added
to the dataset, thus

2. creating a shift in the rankings and, by extension, quantiles of
the observed y values, in turn

3. leading to the binary label of at most one instance to flip.

Therefore, between consecutive iterations, changes to the classification
dataset are fairly incremental. One can leverage this to make classifier
training more efficient, especially in families of classifiers for which
re-training entirely from scratch in each iteration is superfluous and
wasteful. See Figure 5.4 for an illustrative example, in which the task is
to optimise a contrived, synthetic “noise-only” function f (x) = 0 with
observation noise ε ∼ N (0, 1), and the proportion is set to γ = 1/4.

Some viable strategies for reducing per-iteration classier learning
overhead may include speeding up convergence by (i) importance
sampling (e. g., re-weighting new samples and those for which the
label have flipped), (ii) early-stopping (stop training early if either the
loss or accuracy have not changed for some number of epochs) and
(iii) annealing (decaying the number of epochs or batch-wise training
steps as optimisation progresses).

5.3.2 Choice of Probabilistic Classifier

We examine a few variations of bore that differ in the choice of
classifier and discuss their strengths and weaknesses across different
global optimisation problem settings.

multi-layer perceptrons . We propose bore-mlp, a variant
based on mlps. This choice is appealing not only for (i) its flexibility
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Figure 5.4: Optimising a synthetic “noise-only” function. As we iterate
through the bo loop from top to bottom, the array of targets
grows from left to right. In each iteration, the size of the array in-
creases by one, resulting in a re-shuffling of the rankings and, by
extension, quantiles. This in turn leads to the label for at most one
instance to flip. Hence, between consecutive iterations, changes
to the classification dataset are fairly incremental. This property
can be exploited to make classifier training more efficient in each
iteration.

and universal approximation guarantees [107] but because (ii) one
can easily adopt stochastic gradient descent (sgd) methods to scale
up its parameter learning [142], and (iii) it is differentiable end-to-
end, thus enabling the use of quasi-Newton methods such as l-bfgs

[150] for candidate suggestion. Lastly, since sgd is online by nature,
(iv) it is feasible to adapt weights from previous iterations instead
of training from scratch. A notable weakness is that mlps can be
over-parameterised and therefore considerably data-hungry.

tree-based ensembles . We consider two further variants: bore-
rf and bore-xgb, both based on ensembles of decision trees – namely,
random forest (rf) [19] and xgboost [34], respectively. These variants
are attractive since they inherit from decision trees the ability to (i)
deal with discrete and conditional inputs by design, (ii) work well
in high-dimensions, and (iii) are scalable and easily parallelizable.
Further, (iv) online extensions of rfs [222] may be applied to avoid
training from scratch. A caveat is that, since their response surfaces
are discontinuous and nondifferentiable, decision trees are difficult to
maximise. Therefore, we appeal to random search and evolutionary
strategies for candidate suggestion. Further details and a comparison
of various approaches is included in Section 5.5.5.2.

In theory, for the approximation of Equation (5.9) to be tight, the
classifier is required to produce well-calibrated probabilities [170]. A
potential drawback of the bore-rf variant is that rfs are generally
not trained by minimising a proper scoring rule. As such, additional
techniques may be necessary to improve calibration [189].
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gaussian processes . The last variant we consider is bore-gp,
based on a gp classifier (gpc) [285]. Like the gp regression model,
gpc offers (i) a high degree of flexibility, at least on smooth functions
up to moderate dimensionalities, and (ii) well-calibrated uncertainty
estimates (useful for marginalising out the hyperparameters from
the acquisition function, as we discuss in Section 5.G). On the other
hand, gpc not only loses one of the foremost appeals of gp regression,
namely, analytical tractability of the predictive, but it is also not neces-
sarily better equipped to deal with the more problematic settings we
have discuseed (discrete variables, high-dimensionalities, etc..), and
its scalability is contingent on the choice of inference approximation
utilised.

5.3.3 Likelihood-Free BO by Weighted Classification

We give a brief overview of the lfbo framework of Song and Ermon
[240]. Recall from Section 2.3.1 that every convex, lower-semicontinuous
function3 f can be represented in terms of its convex dual f ⋆,

f (u) = max
s

{
u f ′(s)− f ⋆( f ′(s))

}

For any function α : X → R, we can leverage this variational represen-
tation to obtain a lower bound on expectations of the form E[ f (α(x))],

Ep(x) [ f (α(x))] = Ep(x)

[
max

s

{
α(x) f ′(s)− f ⋆( f ′(s))

}]

≥ max
s

Ep(x)
[
α(x) f ′(s)− f ⋆( f ′(s))

]

≥ max
S:X→R

Ep(x)
[
α(x) f ′(S(x))− f ⋆( f ′(S(x)))

]
. (5.10)

Using the convexity of f , it’s easy to show that the maximiser of
Equation (5.10) is

S∗ ≜ arg max
S:X→R

Ep(x)
[
α(x) f ′(S(x))− f ⋆( f ′(S(x)))

]

= α

Let’s now optimise Equation (5.10) over a family of functions parame-
terised by θ,

θ∗ ≜ arg max
θ

Ep(x)
[
α(x) f ′(Sθ(x))− f ⋆( f ′(Sθ(x)))

]
.

This gives an approximation for function α(x),

Sθ(x) ≈ α(x),

3 we are overloading the notation f here, which has been used earlier in this chapter to
denote the unknown blackbox function we’re seeking to minimising
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that is tight at θ = θ∗. Suppose now the function of interest is the
expected utility α(x;DN , τ) ≜ Ep(y | x,DN)[U(y; τ)] from Equation (2.45).
Then we have

θ∗ ≜ arg max
θ

Ep(x)

[
Ep(y | x,DN)[U(y; τ)] f ′(Sθ(x))− f ⋆( f ′(Sθ(x)))

]

= arg max
θ

Ep(x,y)
[
U(y; τ) f ′(Sθ(x))− f ⋆( f ′(Sθ(x)))

]

= arg max
θ

Ep(x,y) [U(y; τ) log πθ(x) + log(1− πθ(x))] (5.11)

where we obtain Equation (5.11) by setting πθ(x) ≜ σ(log Sθ(x)) and
f (u) ≜ u log u− (u + 1) log (u + 1) from Equations (2.12) and (2.13).
We can view Equation (5.11) as a weighted objective function for binary
classification where the utility U(y; τ) acts as the nonnegative weight
and πθ(x) is the probabilistic classifier, as in Section 5.3. Finally, we
obtain an approximation to the acquisition function,

Sθ(x) =
πθ(x)

1− πθ(x)
≈ α(x; τ).

Like bore, this circumvents the need to explicitly solve the inte-
gral in Equation (2.45) and thus places no restrictions on the form
of p(y | x,DN). Furthermore, this approach can be applied to any
utility function U(y; τ), not only pi, but ei, and beyond.

5.4 related work

The literature on bo is vast and ever-expanding [20, 71, 75, 228]. Some
specific threads pertinent to our work are those that consider alter-
native modelling paradigms to gps, e. g., using nns to obtain greater
flexibility and scalability, as in bananas [281], ablr [200], bohami-
ann [243], and dngo [237], and using tree ensembles such as rfs to
handle discrete and conditional variables, as in smac [111]. To negoti-
ate the tractability of the predictive, these methods must either make
simplifications or resort to approximations. In contrast, by seeking to
directly approximate the acquisition function, bore is unencumbered
by such constraints. Refer to Section 5.G for an expanded discussion.

Beyond the classical improvement-based pi [134] and ei functions [117],
a multitude of acquisition functions has been devised, notably, the
ucb [244], kg [225], es [96], pes [102], and max-value es (mes) [279].
Nonetheless, the improvement-based criteria remain ubiquitous in
large because they are conceptually simple, easy to evaluate and opti-
mise, and consistently performs well in practice. As we examined in
Section 5.3.3, a variant of our model-agnostic approach to bo known
as lfbo [240] accomodates both of the improvement-based criteria,
and, more broadly, any acquisition function that can be expressed as
the expected utility in Equation (2.45).
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Density-ratio estimation is a well-established area with an exten-
sive literature [251]. In light of the drawbacks of the kde approach
discussing in Section 5.2.4, myriad alternatives have been proposed,
including kliep [250], kmm [88], ulsif [122], and rulsif [292]. In
this work, we restrict our focus on cpe, which stands out for its ef-
fectiveness and versatility, demonstrated by its widespread use in
various applications including covariate shift adaptation [15, 250, 268],
ebms [90, 92, 269], gans [86, 191], likelihood-free inference [64, 257,
267], and beyond. Particularly relevant among these is its applica-
tions in bed, a close relative of bo, in which it is similarly used to
approximate the expected utility function [129, 130].

5.5 experiments

We describe the experiments conducted to empirically evaluate our
method. To this end, we consider a variety of problems, ranging from
automated machine learning (automl), robotic arm control, to racing
line optimisation.

We provide comparisons against a comprehensive selection of state-
of-the-art baselines. Namely, across all problems, we consider ran-
dom search (rs) [13], gp-bo (using ei with γ = 0) [117], tpe [14],
and smac [111]. We also consider evolutionary strategies: differen-
tial evolution (de) [249] for problems with continuous domains, and
regularised evolution (re) [210] for those with discrete domains. Fur-
ther information about these baselines and the source code for their
implementations are included in Section 5.D.

To quantitatively assess performance we report the immediate re-
gret (in benchmarks for which the exact global minimum is known),
defined as the absolute error between the global minimum and the
lowest function value attained thus far. Unless otherwise stated we
report, for each benchmark and method, results aggregated across 100

replicated runs.
We set γ = 1/3 across all variants and benchmarks. For candidate

suggestion in the tree-based variants, we use rs with a function eval-
uation limit of 500 for problems with discrete domains, and de with
a limit of 2,000 for those with continuous domains. Our open-source
implementation is available on GitHub at ltiao/bore. Further details
concerning the experimental set-up and the implementation of each
variant are included in Section 5.E.

5.5.1 Neural Network Tuning (HPOBench)

First, we consider the problem of training a two-layer feed-forward
nn for regression. Specifically, a nn is trained for 100 epochs with
the adam optimiser [126], and the objective is the validation mse. The
hyperparameters are the initial learning rate, learning rate schedule, batch

https://github.com/ltiao/bore
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size, along with the layer-specific widths, activations, and dropout rates.
We consider four datasets: protein, naval, parkinsons, and slice,
and utilise HPOBench [128] which tabulates, for each dataset, the mses
resulting from all possible (62,208) configurations. Additional details
are included in Section 5.F.1, and the results are shown in Figure 5.5.
We see across all datasets that the bore-rf and -xgb variants consis-
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Figure 5.5: Immediate regret over function evaluations on the HPOBench
neural network tuning problems (D = 9).

tently outperform all other baselines, converging rapidly toward the
global minimum after 1-2 hundred evaluations – in some cases, earlier
than any other baseline by over two hundred evaluations. Notably,
with the exception being bore-mlp on the parkinsons dataset, all
bore variants outperform tpe, in many cases by a sizable margin.
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Figure 5.6: Immediate regret over function evaluations on the NASBench201

nas problems (D = 6).
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5.5.2 Neural Architecture Search (NASBench201)

Next, we consider a nas problem, namely, that of designing a neural
cell. A cell is represented by a directed acyclic graph (dag) with 4

nodes, and the task is to assign an operation to each of the 6 possible
arcs from a set of five operations. We utilise NASBench201 [60], which
tabulates precomputed results from all possible 56 = 15, 625 combina-
tions for each of the three datasets: CIFAR-10, CIFAR-100 [132], and
ImageNet-16 [43]. Additional details are included in Section 5.F.2, and
the results are shown in Figure 5.6. We find across all datasets that
the bore variants consistently achieve the lowest final regret among
all baselines. Not only that, the bore variants, in particular bore-mlp,
maintains the lowest regret at anytime (i. e. at any optimisation iter-
ation), followed by bore-rf, then bore-xgb/-gp. In this problem, the
inputs are purely categorical, whereas in the previous problem they
are a mix of categorical and ordinal. For the bore-mlp variant, categor-
ical inputs are one-hot encoded, while ordinal inputs are handled by
simply rounding to their nearest integer index. The latter is known to
have shortcomings [77], and might explain why bore-mlp is the most
effective variant in this problem but the least effective in the previous
one.

5.5.3 Robot Arm Pushing

We consider the 14D control problem first studied by Wang and Jegelka
[279]. The problem is concerned with tuning the controllers of robot
hands to push objects to some desired locations. Specifically, there
are two robots, each tasked with manipulating an object. For each
robot, the control parameters include the location and orientation of
its hands, the moving direction, pushing speed, and duration. Due to the
prohibitively large number of function evaluations (∼10,000) required
to achieve reasonable performance, we omit all gp-based methods
from our comparisons on this benchmark. Further, we reduce the
number of replicated runs of each method to 50. Additional details are
included in Section 5.F.3, and the results are shown in Figure 5.7. We
see that bore-xgb attains the highest reward, followed by bore-rf and
tpe (which attain roughly the same performance), and then bore-mlp.
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Figure 5.7: Negative reward over function evaluations on the Robot Pushing
task (D = 14).
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Figure 5.8: Best lap times (in seconds) over function evaluations in the racing
line optimisation problem on various racetracks.
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5.5.4 Racing Line Optimisation.

We consider the problem of computing the optimal racing line for a
given track and vehicle with known dynamics. We adopt the set-up
of Jain and Morari [113], who consider the dynamics of miniature
scale cars traversing the tracks at uc berkeley and eth zürich. The
racing line is a trajectory determined by D waypoints placed along
the length of the track, where the ith waypoint deviates from the
centerline of the track by xi ∈

[
−W

2 , W
2

]
for some track width W. The

task is to minimise the lap time f (x), the minimum time required to
traverse the trajectory parameterised by x = [x1 · · · xD]

⊤. Additional
details are included in Section 5.F.4, and the results are shown in
Figure 5.8. First, we see that the bore variants consistently outperform
all baselines except for gp-bo. This is to be expected since the function
is continuous, smooth, and has ∼20 dimensions or less. Nonetheless,
we find that the bore-mlp variant performs as well as, or marginally
better than, gp-bo on two tracks. In particular, on the uc berkeley

track, we see that bore-mlp achieves the best lap times for the first
∼40 evaluations, and is caught up to by gp-bo in the final 10. On eth

zürich track b, bore-mlp consistently maintains a narrow lead.

5.5.5 Ablation Studies

5.5.5.1 Effects of calibration

As discussed in Section 5.3.2, calibrating the classifier may have a
profound effect on the tree-based variants of bore, namely, bore-rf

and bore-xgb. We consider two popular approaches [189], namely,
Platt scaling [201] and isotonic regression [299, 300]. The results shown
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Figure 5.9: Effects of calibrating classifiers in the bore-rf and bore-xgb vari-
ants. Results of racing line optimisation on the uc berkeley track.

in Figure 5.9 suggest that applying these calibration techniques may
actually have deleterious effects. However, this can also be adequately
explained by overfitting due to insufficient calibration samples. In this
particular problem, only a small number of function evaluations are
required for convergence to the global minimum, so this produces
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a small dataset with which to calibrate the classifier. In the case of
isotonic regression, typically ∼1,000 samples are required. Therefore,
it remains inconclusive whether calibration may in fact carry benefits,
particularly in problem settings that produce large amounts of data.

5.5.5.2 Effects of different strategies to maximise the acquisition function

We examine different strategies for maximising the acquisition func-
tion (i. e. the classifier) in the tree-based variants of bore, namely, bore-
rf and bore-xgb. Decision trees are difficult to maximise since their
response surfaces are discontinuous and nondifferentiable. Hence, we
consider the following methods: rs and de. For each method, we fur-
ther consider different evaluation budgets, i. e., limits on the number
of evaluations of the acquisition function. Specifically, we consider the
limits 50, 100, 200, and 500.
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Figure 5.10: A comparison of various acquisition optimisation strategies on
the NASBench201 problem.

In Figures 5.10a and 5.10b, we show the results of bore-rf and
bore-xgb, respectively, on the CIFAR-10 dataset of the NASBench201

benchmark, as described in Section 5.F.2. Each curve represents the
mean across 100 repeated runs. The opacity is proportional to the
function evaluation limit, with the most transparent having the lowest
limit and the most opaque having the highest limit. We find that rs

appears to outperform de by a narrow margin. Additionally, for de, a
higher evaluation limit appears to be somewhat beneficial, while the
opposite holds true for rs.

5.6 discussion

In this section, we discuss the limitations of our method and suggest
potential approaches to address them. We also discuss the significant
outcomes of this work at the time of writing and their potential impact.

exploration. Similar to the tpe method, bore generally has a
tendency to favour exploitation over exploration. In the case of tpe,
the maximiser of the acquisition function ℓ(x)/g(x) will be located at the
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mode of ℓ(x), which has mass concentrated around inputs for which its
output value is within the smallest proportion γ of all observed output
values (i. e. inputs with label z = 1). Recall the classical formulation
of ei from Equation (2.50) in which the explore-exploit trade-off is
explicitly encoded in mathematical terms. Assuming we had access
to its global optimum, then by design the solution is a candidate
that strikes a good balance between exploration and exploitation.
Indeed, by virtue of having lower predictive uncertainty, previously
evaluated candidates will tend to have lower acquisition values, which
helps to encourage exploration. In contrast, for tpe and bore, the
previously evaluated candidates labeled z = 1 will tend to retain
high acquisition values. Therefore, in the worst-case scenario, the
global optimum of the acquisition function may become stuck at
some local optimum of the blackbox function, or a point within some
neighborhood thereof. In practice, implementations of tpe avoid this
scenario by introducing stochasticity in the acquisition optimisation,
e. g., by randomly sampling from ℓ(x) and suggesting the sample
that maximises ℓ(x)/g(x). We surmise that bore was able to avoid such
pathological cases in our experiments due in part to the sources of
randomness inherent to the acquisition optimisation method of choice.

A further detail to note is that the labels z do not remain static
throughout optimisation. In other words, the classification dataset is
different for each new iteration. Recall that, by construction, only a
fraction γ of the observations can have positive labels z = 1. With
each iteration, observing a new value of y leads to a change in the
threshold τ. Since only a fraction γ of observations can lie below
this threshold, the labels of existing observations must accordingly
flip intermittently throughout optimisation. Thus, as the probabilis-
tic classifier πθ(x) adapts to these updates, the regions in which it
outputs high probabilities will also shift accordingly. Consequently,
the classifier response surface will either become multimodal (leading
to exploration) or become narrower and more sharply-peaked in the
same region (leading to exploitation).

Although not discussed in this thesis, the behavior described above
can make simple ϵ-greedy strategies particularly effective at stimulat-
ing exploration. Follow-up work by Oliveira, Tiao, and Ramos [193]
has considered batch extensions using Stein variational gradient de-
scent (svgd) [151], which encourages greater diversity in the query
batch and provides theoretical guarantees.

hyperparameter estimation. Firstly, a noteworthy consequence
of seeking to directly approximate pi under its alternative formula-
tion is that the classifier parameters θ in bore can be interpreted as
hyperparameters (in the same way that the parameters of the gp kernel
are hyperparameters), a deterministic treatment of which based on
point estimates can often be viable. For example, in the bore-mlp
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variant, θ consists of the layer weights, which we are able to esti-
mate using type-II maximum likelihood. In contrast, to utilise nns
in traditional bo, generally the layer weights ω are parameters that
must first be marginalised out in order to compute the predictive
pθ(y | x,DN) =

∫
pθ(y | x, ω)pθ(ω | DN)dω, while the hyperparame-

ters θ, consisting of e. g., the prior and likelihood precisions, may
optionally be marginalised out as well (though usually point esti-
mates suffice). Refer to Section 5.G for an expanded discussion on
this distinction. As with the gp hyperparameters in gp-bo, in order to
encourage exploration, it may be beneficial to consider placing a prior
on θ and marginalising out its uncertainty [236]. Further, compared
against gp-bo, a potential downside of bore is that there may be vastly
more meta-hyperparameters settings from which to choose. Whereas in
gp-bo these might consist of, e. g., the choice of kernel and its isotropy,
there are potentially many more possibilities in bore. In bore-mlp, this
may consist of, e. g., layer depth, widths, activations, etc. – the tuning
of which is often the reason one appeals to bo in the first place. While
we obtained remarkable results with the proposed variants without
needing to deviate from the sensible defaults, in general, for further
improvements in calibration and sample diversity, it may be beneficial
to consider marginalising out even the meta-hyperparameters [280].

Impact to Date

We discuss the impactful outcomes of this work to date. First, we
examine the real-world uses of bore. Despite the emergence of various
players in the field, toolkits such as hyperopt and Optuna still remain
the most widely used for hpo, especially in the domain of automl.
These libraries rely foremost on the tpe method as their default search
algorithm. Indeed, in many settings, e. g., those of high-dimensionality,
tpe often outperforms other paradigms such as evolutionary strategies
or traditional gp-based bo. Having addressed several of the most pro-
found shortcomings of tpe, bore has proved, in turn, to consistently
outperform tpe. This was not only demonstrated in this chapter but
has been independently observed in subsequent works. Thus seen,
bore stands poised to be an ideal candidate to replace tpe as the lead-
ing method for hyperparameter search. In fact, bore has already been
adopted as one of the primary search algorithms in SyneTune [224], a
rapidly growing open-source framework for hpo developed by Ama-
zon Research.

Second, we highlight bore as a new research avenue. Less than a
year since its initial publication, it has garnered recognition and is
set to be featured in the upcoming textbook on Bayesian optimisation
by Garnett [75], scheduled to be published later this year. Further-
more, prominent research labs have already embarked on extending
bore’s capabilities, such as extensions to multiple objectives [53] and

https://github.com/hyperopt/hyperopt
https://github.com/optuna/optuna
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generalisations to other acquisition functions [241], as we discussed in
Section 5.3.3.

5.7 summary

We have presented a novel methodology for bo based on the relation-
ship between improvement-based acquisition functions and proba-
bilistic classifier. This observation is made through the well-known
link between cpe and dre, and the lesser-known insight that pi can be
expressed as a relative density-ratio between two unknown distribu-
tions.

We discussed important ways in which tpe, an early attempt to
exploit the latter link, falls short. Further, we demonstrated that our
cpe-based approach to bore, in particular, our variants based on the
mlp, rf, xgboost, and gp classifiers, consistently outperform tpe,
and compete well against the state-of-the-art derivative-free global
optimisation methods.

Overall, the simplicity and effectiveness of bore make it a promising
approach for black-box optimisation, and its high degree of extensibil-
ity provides numerous exciting avenues for future work.





A D D E N D U M

5.a relative density-ratio : unabridged notation

In Section 5.2, for notational simplicity, we had excluded the depen-
dencies of ℓ, g and rγ on τ. Let us now define these densities more
explicitly as

ℓ(x; τ) ≜ p (x | y ≤ τ,DN) , and g(x; τ) ≜ p (x | y > τ,DN) ,

and accordingly, the γ-relative density-ratio from Equation (5.1) as

r(x; γ, τ) =
ℓ(x; τ)

γℓ(x; τ) + (1− γ)g(x; τ)
.

Recall from Equation (5.3) that

αPI

(
x;DN , Φ−1(γ)

)
∝ r
(

x; γ, Φ−1(γ)
)

. (5.12)

In step 1, Bergstra et al. [14] resort to optimising r(x; 0, Φ−1(γ)), which
is justified by the fact that

r(x; γ, Φ−1(γ)) = hγ

[
r
(

x; 0, Φ−1(γ)
)]

,

for strictly nondecreasing hγ. Note we have used a blue and orange
colour coding to emphasise the differences in the setting of γ (best
viewed on a computer screen). Recall that Φ−1(0) = minn yn corre-
sponds to the conventional setting of threshold τ. However, make no
mistake, for any γ > 0,

αPI

(
x;DN , Φ−1(0)

)
̸∝ r
(

x; 0, Φ−1(γ)
)

.

Therefore, given the numerical instabilities associated with this ap-
proach, as discussed in Section 5.2.4, there is no advantage to be gained
from taking this direction. Moreover, Equation (5.12) only holds for
γ > 0. To see this, suppose γ = 0, which gives

αPI

(
x;DN , Φ−1(0)

)
∝ r
(

x; 0, Φ−1(0)
)

.

However, since by definition ℓ
(
x; Φ−1(0)

)
has no mass, the rhs is

undefined.
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5.b class-posterior probability

We provide an unabridged derivation of the identity of Equation (5.7).
First, the γ-relative density ratio is given by

rγ(x) ≜
ℓ(x)

γℓ(x) + (1− γ)g(x)

=
p(x | z = 1)

γ · p(x | z = 1) + (1− γ) · p(x | z = 0)

=

(
p(z = 1 | x)���p(x)

p(z = 1)

)(
γ · p(z = 1 | x)���p(x)

p(z = 1)
+ (1− γ) · p(z = 0 | x)���p(x)

p(z = 0)

)−1

.

By construction, we have p(z = 1) ≜ p(y ≤ τ) = γ and π(x) ≜ p(z =

1 | x). Therefore,

rγ(x) = γ−1π(x)
(
�γ ·

π(x)

�γ
+����(1− γ) · 1− π(x)

���1− γ

)−1

= γ−1π(x).

Alternatively, we can also arrive at the same result by writing the
ordinary density ratio r0(x) in terms of π(x) and γ, which is well-
known to be

r0(x) =
(

γ

1− γ

)−1 π(x)
1− π(x)

.

Plugging this into function hγ, we get

rγ(x) = hγ(r0(x)) = hγ

((
γ

1− γ

)−1 π(x)
1− π(x)

)

=

(
γ + (1− γ)

(
γ

1− γ

)(
π(x)

1− π(x)

)−1
)−1

= γ−1

(
1 +

(
π(x)

1− π(x)

)−1
)−1

= γ−1π(x).

5.c log loss

Recall from Section 2.3.2 that the log loss, also known as the binary
cross-entropy (bce) loss, is given by

L(θ) ≜ −β ·Eℓ(x)[log πθ(x)]− (1− β) ·Eg(x)[log (1− πθ(x))]. (5.13)

The astute reader will have noticed that, unlike before, we’ve intro-
duced multipliers involving β, which denotes the class balance rate,
to account for potential class imbalance. Indeed, we recover the log
loss first introduced in Equation (2.11) when β = 1/2. In particular, let
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Nℓ and Ng be the sizes of the support of ℓ(x) and g(x), respectively.
Then, we have

β =
Nℓ

N
, and 1− β =

Ng

N
,

where N = Nℓ + Ng. In practice, we approximate the log loss L(θ) by
the empirical risk of Equation (5.8), given by

L̂(θ) ≜ − 1
N

(
N

∑
n=1

zn log πθ(xn) + (1− zn) log (1− πθ(xn))

)
.

In this section, we show that the approximation of Equation (5.9), that
is,

πθ(x) ≈ γ · rγ(x),

attains equality at θ∗ = arg minθL(θ).

5.c.1 Optimum

Taking the functional derivative of L∗ in Equation (5.13), we get

∂L∗
∂πθ

= −Eℓ(x)

[
β

πθ(x)

]
+ Eg(x)

[
1− β

1− πθ(x)

]

=
∫ (
−β

ℓ(x)
πθ(x)

+ (1− β)
g(x)

1− πθ(x)

)
dx

This integral evaluates to zero iff the integrand itself evaluates to zero.
Hence, we solve the following for πθ∗(x),

β
ℓ(x)

πθ∗(x)
= (1− β)

g(x)
1− πθ∗(x)

.

We re-arrange this expression to give

1− πθ∗(x)
πθ∗(x)

=

(
1− β

β

)
g(x)
ℓ(x)

⇔ 1
πθ∗(x)

− 1 =
βℓ(x) + (1− β)g(x)

βℓ(x)
− 1.

Finally, we add one to both sides and invert the result to give

πθ∗(x) =
βℓ(x)

βℓ(x) + (1− β)g(x)
= β · rβ(x).

Since, by definition β = γ, this leads to πθ∗(x) = γ · rγ(x) as required.

5.c.2 Empirical Risk Minimisation

For completeness, we show that the log loss L(θ) of Equation (5.13)
can be approximated by L̂(θ) of Equation (5.8). First, let ρ be the
permutation of the set {1, . . . , N}, i. e. the bijection from {1, . . . , N}
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to itself, such that yρ(n) ≤ τ if 0 < ρ(n) ≤ Nℓ, and yρ(n) > τ if
Nℓ < ρ(n) ≤ Ng. That is to say,

xρ(n) ∼




ℓ(x) if 0 < ρ(n) ≤ Nℓ,

g(x) if Nℓ < ρ(n) ≤ Ng.
and zρ(n) ≜





1 if 0 < ρ(n) ≤ Nℓ,

0 if Nℓ < ρ(n) ≤ Ng.

Then, we have

L(θ) ≜ − 1
N

(
Nℓ ·Eℓ(x)[log πθ(x)] + Ng ·Eg(x)[log (1− πθ(x))]

)

≈ − 1
N

(

��Nℓ ·
1

��Nℓ

Nℓ

∑
n=1

log πθ(xρ(n)) +�
�Ng ·

1

�
�Ng

Ng

∑
n=Nℓ+1

log (1− πθ(xρ(n)))

)

= − 1
N

(
N

∑
n=1

zρ(n) log πθ(xρ(n)) + (1− zρ(n)) log (1− πθ(xρ(n)))

)

= − 1
N

(
N

∑
n=1

zn log πθ(xn) + (1− zn) log (1− πθ(xn))

)
≜ L̂(θ),

as required.

5.d implementation of baselines

The software implementations of the baseline methods considered in
our comparisons are described in Table 5.D.1.

Table 5.D.1: Implementations of baseline methods.

Method Software Library URL (github.com/*) Notes

tpe HyperOpt hyperopt/hyperopt

smac SMAC3 automl/SMAC3

gp-bo AutoGluon awslabs/autogluon in
autogluon.searcher.GPFIFOSearcher

de - - custom implementation

re NASBench-101 automl/nas_benchmarks in
experiment_scripts/run_regularized_evolution.py

5.e experimental set-up and implementation details

hardware . In our experiments, we employ m4.xlarge aws ec2

instances, which have the following specifications:

• CPU: Intel(R) Xeon(R) E5-2676 v3 (4 Cores) @ 2.4 GHz

• Memory: 16GiB (DDR3)

https://github.com/hyperopt/hyperopt
https://github.com/automl/SMAC3
https://github.com/awslabs/autogluon
https://github.com/automl/nas_benchmarks
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software . Our method is implemented as a configuration generator
plug-in in the HpBandSter library of Falkner, Klein, and Hutter [68].
The code will be released as open-source software upon publication.

The implementations of the classifiers on which the proposed vari-
ants of bore are based are described in Table 5.E.1.

Table 5.E.1: Implementations of classifiers.

Model Software Library URL

Multi-layer perceptron (mlp) Keras keras.io

Random forest (rf) scikit-learn scikit-learn.org

Extreme gradient-boosting (xgboost) XGBoost xgboost.readthedocs.io

We set out with the aim of devising a practical method that is not
only agnostic to the of choice classifier, but also robust to underlying
implementation details – down to the choice of algorithmic settings.
Ideally, any instantiation of bore should work well out-of-the-box
without the need to tweak the sensible default settings that are typi-
cally provided by software libraries. Therefore, unless otherwise stated,
we emphasise that made no effort was made to adjust any settings and
all reported results were obtained using the defaults. For reproducibil-
ity, we explicitly enumerate them in turn for each of the proposed
variants.

5.e.1 BORE-RF

We limit our description to the most salient hyperparameters. We do
not deviate from the default settings which, at the time of this writing,
are:

• number of trees – 100

• minimum number of samples required to split an internal node (min_samples_split)
– 2

• maximum depth – unspecified (nodes are expanded until all leaves
contain less than min_samples_split samples)

5.e.2 BORE-XGB

• number of trees (boosting rounds) – 100

• learning rate (η) – 0.3

• minimum sum of instance weight (Hessian) needed in a child (min_child_weight)
– 1

• maximum depth – 6

https://github.com/automl/HpBandSter
keras.io
scikit-learn.org
xgboost.readthedocs.io
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5.e.3 BORE-MLP

In the bore-mlp variant, the classifier is a mlp with 2 hidden layers,
each with 32 units. We consistently found elu activations [44] to
be particularly effective for lower-dimensional problems, with relu

remaining otherwise the best choice. We optimise the weights with
adam [126] using batch size of B = 64. For candidate suggestion, we
optimise the input of the classifier wrt to its output using multi-started
l-bfgs with three random restarts.

epochs per iteration. To ensure the training time on bo it-
eration N is nonincreasing as a function of N, instead of directly
specifying the number of epochs (i. e. full passes over the data), we
specify the number of (batch-wise gradient) steps S to train for in
each iteration. Since the number of steps per epoch is M = ⌈N/B⌉, the
effective number of epochs on the N-th bo iteration is then E = ⌊S/M⌋.
For example, if S = 800 and B = 64, the number of epochs for iteration
N = 512 would be E = 100. As another example, for all 0 < N ≤ B
(i. e. we have yet to observe enough data to fill a batch), we have
E = S = 800. See Figure 5.E.1 for a plot of the effective number of
epochs against iterations for different settings of batch size B and num-
ber of steps per epoch S. Across all our experiments, we fix S = 100.
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Figure 5.E.1: Effective number of epochs on the nth iteration for different
settings of batch size B and number of steps per epoch S.

5.f details of benchmarks

5.f.1 HPOBench

The hyperparameters for the HPOBench problem and their ranges are
summarised in Table 5.F.1. All hyperparameters are discrete – either
ordered or unordered. All told, there are 6× 2× 4× 6× 2× 3× 6×
2× 3 = 66, 208 possible combinations. Further details on this problem
can be found in [128].

5.f.2 NASBench201

The hyperparameters for the HPOBench problem and their ranges
are summarised in Table 5.F.2. The operation associated with each of
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Table 5.F.1: Configuration space for HPOBench.

Hyperparameter Range

Initial learning rate (lr) {5× 10−4, 1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1}
lr schedule {cosine, fixed}
Batch size {23, 24, 25, 26}
Layer 1 Width {24, 25, 26, 27, 28, 29}

Activation {relu, tanh}
Dropout rate {0.0, 0.3, 0.6}

Layer 2 Width {24, 25, 26, 27, 28, 29}
Activation {relu, tanh}
Dropout rate {0.0, 0.3, 0.6}

Table 5.F.2: Configuration space for NASBench-201.

Hyperparameter Range

Arc 0 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc 1 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc 2 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc 3 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc 4 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc 5 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}

the (4
2) = 6 arcs can belong to one of five categories. Hence, there are

56 = 15, 625 possible combinations of hyperparameter configurations.
Further details on this problem can be found in [60].

5.f.3 Robot pushing control

This problem is concerned with tuning the controllers of two robot
hands, with the goal of each pushing an object to some prescribed
goal location p(1)

g and p(2)
g , respectively. Let p(1)

s and p(2)
s denote the

specified starting positions, and p(1)
f and p(2)

f the final positions (the
latter of which are functions of the control parameters x). The reward
is defined as

R(x) ≜ ∥p(1)
g − p(1)

s ∥+ ∥p(2)
g − p(2)

s ∥︸ ︷︷ ︸
initial distances

− (∥p(1)
g − p(1)

f ∥+ ∥p
(2)
g − p(2)

f ∥)︸ ︷︷ ︸
final distances

,

which effectively quantifies the amount of progress made toward
pushing the objects to the desired goal. For each robot, the control
parameters include the location and orientation of its hands, the
pushing speed, moving direction and push duration. These parameters
and their ranges are summarised in Table 5.F.3.

Further details on this problem can be found in [278]. This simula-
tion is implemented with the Box2D library, and the associated code
repository can be found at https://github.com/zi-w/Ensemble-Bayesian-Optimisation.

https://box2d.org/
https://github.com/zi-w/Ensemble-Bayesian-Optimisation
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Table 5.F.3: Configuration space for the robot pushing control problem.

Hyperparameter Range

Robot 1 Position x [−5, 5]

Position y [−5, 5]

Angle θ [0, 2π]

Velocity vx [−10, 10]

Velocity vy [−10, 10]

Push Duration [2, 30]

Torque [−5, 5]

Robot 2 Position x [−5, 5]

Position y [−5, 5]

Angle θ [0, 2π]

Velocity vx [−10, 10]

Velocity vy [−10, 10]

Push Duration [2, 30]

Torque [−5, 5]

5.f.4 Racing Line Optimisation

This problem is concerned with finding the optimal racing line. Namely,
given a racetrack and a vehicle with known dynamics, the task is to de-
termine a trajectory around the track for which the minimum time re-
quired to traverse it is minimal. We adopt the set-up of Jain and Morari
[113], who consider 1:10 and 1:43 scale miniature remote-controlled
cars traversing tracks at UC Berkeley [148] and ETH Zürich [220],
respectively.

The trajectory is represented by a cubic spline parameterised by the
2D coordinates of D waypoints, each placed at locations along the
length of the track, where the ith waypoint deviates from the centerline
of the track by xi ∈

[
−W

2 , W
2

]
, for some track width W. Hence, the

parameters are the distances by which each waypoint deviates from
the centerline, x = [x1 · · · xD]

⊤.
Our blackbox function of interest, namely, the minimum time to

traverse a given trajectory, is determined by the solution to a convex op-
timisation problem involving partial differential equations (pdes) [149].
Further details on this problem can be found in [113], and the associ-
ated code repository can be found at https://github.com/jainachin/
bayesrace.

5.g parameters , hyperparameters , and meta-hyperparameters

We explicitly identify the parameters ω, hyperparameters θ, and meta-
hyperparameters λ in our approach, making clear their distinction,
examining their roles in comparison with other methods and discuss
their treatment.

https://github.com/jainachin/bayesrace
https://github.com/jainachin/bayesrace
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Table 5.G.1: A taxonomy of parameters, hyperparameters, and meta-
hyperparameters.

bo with Gaussian pro-
cesses (gps)

bo with Bayesian neural
networks (bnns)

bore with neural net-
works (nns)

Meta-hyperparameters λ kernel family, kernel
isotropy (ard), etc..

layer depth, widths, acti-
vations, etc..

prior precision α, likeli-
hood precision β, layer
depth, widths, activa-
tions, etc..

Hyperparameters θ kernel lengthscale and
amplitude, ℓ and σ, like-
lihood precision β

prior precision α, likeli-
hood precision β

weights W, biases b

Parameters ω None ∅ (nonparametric) weights W, biases b None ∅ (by design)

5.g.1 Parameters

Since we seek to directly approximate the acquisition function, our
method is by design free of parameters ω. By contrast, in classical bo,
the acquisition function is derived from the analytical properties of the
posterior predictive p(y | x, θ,DN). To compute this, the uncertainty
about parameters ω must be marginalised out

p(y | x, θ,DN) =
∫

p(y | x, ω, θ)p(ω | θ,DN)dω, (5.14)

where

p(ω | θ,DN) =
p(y |X, ω, θ)p(ω | θ)

p(y |X, θ)
.

While gps are free of parameters, the latent function values f must be
marginalised out

p(y | x, θ,DN) =
∫

p(y | x, f, θ)p(f | θ,DN)df.

In the case of gp regression, this is easily computed by applying
straightforward rules of Gaussian conditioning. Unfortunately, few
other models enjoy this convenience.

case study : As a concrete example, consider bnns. The param-
eters ω consist of the weights W and biases b in the nn, while the
hyperparameters θ consist of the prior and likelihood precisions, α and
β, respectively. In general, p(ω | DN , θ) is not analytically tractable.

• To work around this, dngo [237] and ablr [200] both constrain
the parameters ω to include the weights and biases of only the
final layer, WL and bL, and relegate those of all preceding layers,
W1:L−1 and b1:L−1, to the hyperparameters θ. This yields an exact
(Gaussian) expression for p(ω | DN , θ) and p(y | x, θ,DN). To
treat the hyperparameters, Perrone et al. [200] estimate W1:L−1,
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b1:L−1, α and β using type-II mle, while Snoek et al. [237] use a
combination of type-II mle and slice sampling [186].

• In contrast, bohamiann [243] makes no such simplifying distinc-
tions regarding the layer weights and biases. Consequently, they
must resort to sampling-based approximations of p(ω | θ,DN),
in their case by adopting sghmc [33].

In both approaches, compromises needed to be made in order to ne-
gotiate the computation of p(ω | θ,DN). This is not to mention the
problem of computing the posterior over the hyperparameters p(θ | DN),
which we discuss next. In contrast, bore avoids the problems asso-
ciated with computing the posterior predictive p(y | x, θ,DN), and,
by extension, the posterior p(ω | θ,DN) of Equation (5.14). Therefore,
such compromises are simply unnecessary.

5.g.2 Hyperparameters

For the sake of notational simplicity, we have thus far not been explicit
about how the acquisition function depends on the hyperparame-
ters θ and how they are handled. We first discuss generically how
hyperparameters θ are treated in bo. Refer to [228] for a full discus-
sion. In particular, we rewrite the acquisition function, expressed in
Equation (2.45), to explicitly include θ

α(x; θ,DN , τ) ≜ Ep(y | θ,x,DN)[U(y; τ)].

marginal acquisition function. Ultimately, one wishes to
maximise the marginal acquisition function A(x;DN , τ), which marginalises
out the uncertainty about the hyperparameters,

A(x;DN , τ) =
∫

α(x; θ,DN , τ)p(θ | DN)dθ,

where

p(θ | DN) =
p(y |X, θ)p(θ)

p(y |X) .

This consists of an expectation over the posterior p(θ | DN) which
is, generally speaking, analytically intractable. In practice, the most
straightforward way to compute A(x;DN , τ) is to approximate the
posterior using a delta measure centered at some point estimate θ̂,
either the type-II mle θ̂mle or the map estimate θ̂map. This leads to

A(x;DN , τ) ≈ α(x; θ̂,DN , τ).

Suffice it to say, sound uncertainty quantification is paramount to
guiding exploration. Since point estimates fail to capture uncertainty
about hyperparameters θ, it is often beneficial to turn instead to mc

estimation [236]

A(x;DN , τ) ≈ 1
S

S

∑
s=1

α(x; θ(s),DN , τ), θ(s) ∼ p(θ | DN).
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marginal class-posterior probabilities . Recall that the
likelihood of our model is

p(z | x, θ) ≜ Bern(z |πθ(x)),

or more succinctly πθ(x) = p(z = 1 | x, θ). We specify a prior p(θ) on
hyperparameters θ and marginalise out its uncertainty to produce our
analog to the marginal acquisition function

Π(x;DN) =
∫

πθ(x)p(θ | DN)dθ,

where

p(θ | DN) =
p(z |X, θ)p(θ)

p(z |X) .

As in the generic case, we are ultimately interested in maximising
the marginal class-posterior probabilities Π(x;DN). However, much
like A(x;DN , τ), the marginal Π(x;DN) is analytically intractable in
turn due to the intractability of p(θ | DN). In this work, we focus on
minimising the log loss of Equation (5.8), which is proportional to the
negative log-likelihood

L(θ) = − 1
N

N

∑
n=1

log p(zn | xn, θ) ∝ − log p(z |X, θ).

Therefore, we’re effectively performing the equivalent of type-II mle,

θ̂mle = arg min
θ

L(θ) = arg max
θ

log p(z |X, θ).

In the interest of improving exploration and, of particular interest
in our case, calibration of class-membership probabilities, it may be
beneficial to consider mc and other approximate inference methods [18,
74, 136]. This remains fertile ground for future work.

5.g.3 Meta-hyperparameters

In the case of bore-mlp, the meta-hyperparameters might consist of,
e. g., layer depth, widths, activations, etc. – the tuning of which is
often the reason one appeals to bo in the first place. For improvements
in calibration, and therefore sample diversity, it may be beneficial
to marginalise out the uncertainty about these, or considering some
approximation thereof, such as hyper-deep ensembles [280].





6
C O N C L U S I O N

Through this thesis, we have sought to advance the integration be-
tween deep learning and probabilistic ml, with a focus on Gaussian
processes and Bayesian optimisation. In this chapter, we reflect on our
main contributions, discuss directions for future work, and conclude
with a few parting words.

6.1 summary of contributions

First, in Chapter 3, we improved upon prior work hyperspherical
sparse gp approximation that uses nonlinear activations as inter-
domain features, known as the activated svgp [66, 252], in which a
single-layer feed forward nn emerges from the posterior predictive dis-
tribution. We provided an analysis of the limitations of this approach
which inter alia preclude the use of widely-used covariance functions
and nonlinear activations. Our key contribution was extending the
orthogonally-decoupled sparse gp approximation to accomodate inter-
domain features. We demonstrated that the combination of orthogonal
inducing points and spherical activation features effectively mitigates
the earlier limitations, not only bringing their predictive performance
closer to nns, but achieving superior scalability over alternatives.

Second, in Chapter 4, we provided an interpretation of cyclegans
as a Bayesian framework for inferring the hidden representations of
entities from one domain as entities in another. Specifically, we framed
the problem of learning cross-domain correspondences without paired
data as inference in a lvm. First, we introduced the implicit lvm,
where the prior over hidden representations is specified flexibly as
an implicit distribution. We then introduced a new vi framework that
differs from traditional vi in that it directly approximates the joint
distribution based on a symmetrised kl divergence. Finally we showed
that cyclegans emerges as a variant of this framework, casting new
light on this powerful class of deep generative models for image style
transfer.

Third, in Chapter 5, we introduced a reformulation of Bayesian
optimisation based on solving a binary classification problem. We
leveraged the connections between the improvement-based acquisition
functions, density-ratio estimation, and class-probability estimation, to
derive a binary classifier of candidate solutions that effectively serves
as the acquisition function. By doing away with an explicit probabilistic
model of the objective function, we eliminated the impediments posed
by tractability requirements, enabling the seamless integration of

135
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deep learning and other powerful modelling paradigms in a manner
that does not necessitate approximations or compromise scalability
and representational capacity. Overall, this model-agnostic framework
substantially expands the applicability of bo to diverse, challenging
optimisation problem scenarios.

6.2 future directions

Looking to the future, promising new research avenues emerge that
expand on the contributions made in this thesis.

orthogonal inter-domain inducing features . Future work
should explore additional combinations of inter-domain inducing fea-
tures in the standard and orthogonal bases beyond the traditional
inducing points and the spherical nn activation features examined
here. In particular, since the orthogonal decoupling of gps can be
seen as a way to leverage different bases to separately represent the
predictive mean and variance [223], it is promising to tap into the
strengths of the spherical nn activation features [66, 252] and spherical
harmonics features [65] to independently capture the predictive mean
and variance, respectively. More broadly, to better enable exploration
in this direction and accomodate the composition of various inter-
domain inducing features, the software developed for this research
should be refactored based on principles of modularity and separa-
tion of concerns. Adopting this more flexible and extensible design
approach will facilitate seamless experimentation with combinations
of diverse inter-domain inducing features in orthogonally-decoupled
sparse gp approximations.

bore by direct dre . Future work should explore the potential
benefits of other direct dre methods. While the cpe approach is a big
improvement from the problematic tpe approach, it is still thought to
be a simple baseline in the dre literature. The rulsif [292] method
may be of particular interest, not least because it is the only method
of those discussed in Section 2.3 that directly estimates the relative
density-ratio. Furthermore, since rulsif is parameterised by a sum of
Gaussian kernels, it enables the use of well-established mode-finding
approaches, such as the mean-shift algorithm [45], for candidate sug-
gestion. Finally, along the same avenue but in the opposite direction,
one may also consider employing other dre losses [170] for classifier
learning, which would accomodate the use of powerful deep learning
models.

extended bo by classification. Future work should explore
extending bore with model architectures suited for complex real-world
optimisation problems. These “exotic” problems [71] include scenarios
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where the function involve multiple outputs, e. g., in multi-task, multi-
fidelity, and multi-objective problems, where simple feed-forward nns
may be advantageous. They also include problems with structured or
sequential inputs, where graph neural networks (gnns) or Transformer
architectures [274], respectively, may prove beneficial. By upgrading
bore to handle these complex optimisation problems with multiple
outputs, structured inputs, and sequential inputs, it would become
applicable to a wider range of challenging real-world tasks. Ultimately,
the flexibility of the bore framework means its capabilities continue
to grow as researchers creatively integrate it with state-of-the-art
modelling paradigms.

6.3 final reflection

Overall, this thesis has laid the necessary groundwork, improved
existing frameworks, and offered new perspectives on Bayesian opti-
misation, Gaussian processes, and deep learning. Our contributions
advance the integration between deep learning and probabilistic ml,
aiming to make decision support systems more capable, dependable,
and equipped to handle the complex, dynamic, and uncertain chal-
lenges of the modern world.

In closing, we envision a future where the interplay between deep
learning and probabilistic ml continues to evolve, leading to novel
applications and breakthroughs that benefit society across a wide
range of domains. The quest to realise the grand vision of ai – de-
veloping intelligent systems that can perceive, learn, decide, and act
autonomously in complex real-world environments remains ongoing,
and we are excited to contribute to this journey with our work. As
the ai landscape continues to transform, the fusion between deep and
probabilistic learning will undoubtedly play a pivotal role in shaping
the ai of tomorrow.





A
N U M E R I C A L M E T H O D S F O R I M P R O V E D
D E C O U P L E D S A M P L I N G O F G AU S S I A N P R O C E S S E S

a.1 introduction

Sampling from Gaussian processes (gps) is not only crucial in its own
right but also plays a pivotal role in various downstream tasks, notably
Thompson sampling [258], as we detailed in Section 2.5.2.4.

Using the standard approach, the computational cost scales cubically
with the number of test points. Moreover, samples obtained through
this method cannot be straightforwardly evaluated at arbitrary inputs,
let alone optimised. To address these challenges, a common strategy
involves utilising the weight-space approximation of gps based on
their spectral decomposition. However, this introduces its own is-
sues, particularly when the number of training observations increases,
leading to erratic extrapolations [29, 183, 278].

Recent work has proposed a hybrid approach that leverages a sim-
ple, effective, yet underutilised method for sampling from Gaussian
conditionals [289, 291]. This method enables the combined use of the
canonical basis and the spectral basis (also known as Fourier features),
to generate samples efficiently. Notably, these samples can be obtained
with a linear cost in the number of test points, and are easy to evaluate
and optimise.

In existing works, the frequencies are selected through a straight-
forward mc approximation scheme. In this chapter, we explore the
use of various numerical integration techniques to improve upon the
selection mechanism. We provide a concise overview of approaches
considered for the Fourier feature decomposition of stationary ker-
nels, comparing their effectiveness in approximating the kernel matrix.
Subsequently, we introduce variations to existing schemes, extending
the applicability of decompositions to kernel classes beyond the se

kernel. We highlight a critical limitation in an existing class of schemes
based on Gaussian quadrature when dealing with kernels with small
lengthscales. Specifically, small lengthscales result in highly oscillatory
integrals that pose challenges for estimation through numerical meth-
ods. To address this, we consider a previously untapped technique
based on an extension of Newton-Cotes quadrature. Finally, we evalu-
ate how the Fourier feature decompositions derived from the various
numerical integration schemes impact the fidelity of the gp posterior
samples.
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a.2 decoupled sampling of gaussian processes

We give a brief overview of the method proposed by Wilson et al. [289].
Recall that for practical purposes, a gp posterior at T query locations is
simply a T-dimensional conditional Gaussian distribution. In general,
consider jointly Gaussian random variables a ∈ RT and b ∈ RM,

[
a

b

]
∼ N

([
µa

µb

]
,

[
Σaa Σab

Σba Σbb

])
.

The distribution of a conditioned on b = β is given by

p(a | b = β) = N (a | µa|b, Σa|b),

where the mean and covariance are given by

µa|b ≜ µa + ΣabΣ−1
bb(β− µb), and Σa|b ≜ Σaa − ΣabΣ−1

bb Σba.

The standard approach to generating samples from p(a | b = β) is to
use a location-scale transform of normal random variables, i. e.,

a = µa|b + Σ
1/2
a|bη, η ∼ N (0, I) ⇔ a ∼ N (µa|b, Σa|b),

where Σ
1/2
a|b denotes the Cholesky factor of Σa|b, whose calculation has

a cost of O(T3), and is precisely what makes the standard approach
so computationally expensive.

A powerful alternative for sampling conditional Gaussian variablesMatheron’s rule

is Matheron’s rule [120],

(a | b = β)
D
= a + ΣabΣ−1

bb(β− b), (A.1)

where D
= denotes equality in distribution. This is straightforward to

verify. By computing the mean and covariance of this expression, we
get

E[a + ΣabΣ−1
bb(β− b)] = µa + ΣabΣ−1

bb(β− µb) = µa|b

and

Cov[a + ΣabΣ−1
bb(β− b)]

= Σaa − 2ΣabΣ−1
bb Σba + ΣabΣ−1

bb ΣbbΣ−1
bb Σba

= Σaa − ΣabΣ−1
bb Σba = Σa|b

respectively. Recall from Section 2.4.1 that a gp is a random function
such that, at a finite set of locations X∗, the vector f∗ = f (X∗) follows
a Gaussian distribution. Specifically, if f (x) ∼ GP(0, k(x, x′)), then
f∗ ∼ N (0, K∗∗) where K∗∗ ≜ k(X∗, X∗) for some covariance function k.
Further recall from Equation (2.16) that the posterior of an exact gp at
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test locations X∗ given N observations y is p(f∗ | y) = N (µ∗|y, Σ∗∗|y),
where

µ∗|y ≜ K∗f(Kff + β−1I)−1y,

Σ∗∗|y ≜ K∗∗ −K∗f(Kff + β−1I)−1Kf∗,
(A.2)

and from Equation (2.22) that the conditional distribution of svgp

models at test locations X∗ given inducing variables u ∼ p(u) is
p(f∗ | u) = N (µ∗|u, Σ∗∗|u), where

µ∗|u ≜ K∗uK−1
uu u,

Σ∗∗|u ≜ K∗∗ −K∗uK−1
uu Ku∗.

(A.3)

Applying Matheron’s rule from Equation (A.1) to these conditionals,
we have, for exact gps,

(f∗ | y) D
= f∗ + K∗f(Kff + β−1I)−1(y− fN − ϵ),

and, for sparse gps,

(f∗ | u) D
= f∗ + K∗uK−1

uu(u− fM),

where (f∗, fN) and (f∗, fM) respectively are jointly sampled from the
gp prior. The astute reader will recognise the absurdity of this ap-
proach, as it is in fact considerably more expensive than the conven-
tional one. Specifically, jointly sampling from the prior incurs costs of
O
(
(T + N)3) and O

(
(T + M)3), respectively. As we shall see, this is

the paradox that Wilson et al. [289] managed to resolve.
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Figure A.1: An illustration of the variance starvation phenomenon. Across the
columns, we have a comparison of various gp posteriors and their
samples, given n = 4 (top) and n = 1, 024 (bottom) observations
at locations indicated by the shaded regions. A reproduction of
the figures originating from Wilson et al. [289].
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Let’s consider the weight-space approximation described in Sec-
tion 2.4.3. Recall from Equation (2.37) that the posterior weight density
is p(w | y) = N (µw|y, Σw|y), where

µw|y ≜ (Φ⊤Φ + β−1I)−1Φ⊤y,

Σw|y ≜ β−1(Φ⊤Φ + β−1I)−1.

Applying Matheron’s rule of Equation (A.1) to the weight-space
posterior, we have

(w | y) D
= w + Φ⊤(ΦΦ⊤ + β−1I)−1(y−Φw− ϵ).

While possible to sample from efficiently, as alluded to previously,
this approach is beset by the general limited expressiveness of finite-
dimensional feature maps, which can hamper ability to extrapolate
predictions at test time. In particular, for Fourier feature decompo-
sitions, this is a phenomenon known as variance starvation, wherebyvariance starvation

extrapolations become erratic as the number of observations N in-
creases. The intuition behind this is that although the Fourier basis is
suited for representing stationary gps, the posterior is generally non-
stationary. See Figure A.1 for an illustration of the variance starvation
phenomenon.

Wilson et al. [289] seek to combine the best of both worlds, by
leveraging the strength of the Fourier basis ϕ( · ) at representing
stationary priors [206], and the strength of the canonical basis k( · , z)
at representing the data [24].

The decoupled sampling approach for sparse gps is

(f∗ | u)
D≈ Φ∗w + K∗uK−1

uu (u−Φw) , (A.4)

and, for exact gps, is

(f∗ | y)
D≈ Φ∗w + K∗f(Kff + β−1I)−1 (y−Φw− ϵ) . (A.5)

It’s important to emphasise that these are in fact only approximately
equal in distribution. To understand precisely how they differ, let us
compute their moments. We focus on the case of sparse gps in Equa-
tion (A.4), the mean and covariance of which are

E[Φ∗w + K∗uK−1
uu (u−Φw)] = K∗uK−1

uu u = µ∗|u

and

Cov[Φ∗w + K∗uK−1
uu (u−Φw)]

= Φ∗Φ⊤∗ − 2K∗uK−1
uu ΦΦ⊤∗ + K∗uK−1

uu ΦΦ⊤K−1
uu Ku∗

(A.6)

≈ K∗∗ −K∗uK−1
uu Ku∗ = Σ∗∗|u

We see that mean is exactly equal to the µ∗|u of Equation (A.3), but the
covariance is only equal to Σ∗∗|u if

Φ∗Φ⊤∗ = K∗∗, ΦΦ⊤∗ = Ku∗, and ΦΦ⊤ = Kuu,
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Figure A.2: Posterior predictive distributions.
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Figure A.3: Posterior predictive distributions from the decoupled approach,
overlayed on top of one another.

which are satisfied when k(x, x′) = ϕ(x)⊤ϕ(x′) for all x, x′ ∈ X .
In other words, we have equality in distribution in Equations (A.4)
and (A.5) when the kernel approximation is exact. Thus seen, the
quality of decoupled pathwise samples relies crucially on the quality
of the kernel approximation in Equation (2.38) itself. In this chapter,
we explore various methods from the classical literature on numerical
integration [51] to tighten this approximation.

a.3 numerical integration for gp prior approximations

A multitude of numerical integration methods [51] can readily be de-
ployed to compute the expectation in Equation (2.44),

k(x, x′) = Ep(ω)[φω(x)⊤φω(x′)]

≈
L

∑
i=1

αi

(
φξi

(x)⊤φξi
(x′)

)
,
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where ξi are referred to as the abscissas, or, nodes, and αi the weights,
or, coefficients. Let us define the mapping φ : RD → RL′ ,

φ(x) ≜




√
α1 cos ξ⊤1 x

...
√

αL cos ξ⊤L x
√

α1 sin ξ⊤1 x
...

√
αL sin ξ⊤L x




, (A.7)

where L′ = 2L. We therefore have

φ(x)⊤φ(x′) =
L

∑
i=1

ai

(
φξi

(x)⊤φξi
(x′)

)
≈ k(x, x′).

We can view φ(x),φ(x′) as a factorisation, or, decomposition, of the
kernel k(x, x′). Thus, we refer to φ as a Fourier feature decomposition of
k.

a.3.1 Monte Carlo Estimation

Let us consider the simple case of mc integration, where αi ≜ 1/L and
ξi ≜ ω(i), with ω(i) ∼ p(ω). More explicitly,

k(x, x′) ≈ 1
L

L

∑
i=1

φω(i)(x)⊤φω(i)(x′), where ω(i) ∼ p(ω).

The corresponding Fourier feature decomposition is then

φ(x) ≜

√
2
L′




cos ω(1)⊤x
...

cos ω(L′/2)⊤x

sin ω(1)⊤x
...

sin ω(L′/2)⊤x




, (A.8)

where ω(i) ∼ p(ω), which we refer to as the mc Fourier features or,
more commonly, rff [206, 207].

Let us define ϕ(ω,b) : RD → R to be, as before, the projection inphase-shifted cosine
features some random direction ω ∼ p(ω), but shifted by some b ∼ U [0, 2π],

ϕ(ω,b)(x) ≜
√

2 cos (ω⊤x + b). (A.9)

We take the product of ϕ(ω,b) evaluated at inputs x and x′ to get

ϕ(ω,b)(x)ϕ(ω,b)(x
′) = 2 cos (ω⊤x + b) cos (ω⊤x′ + b) (A.10)

= cos (ω⊤(x + x′) + 2b) + cos (ω⊤(x− x′)),
(A.11)
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where, in the last line, we’ve used the product-to-sum trigonometric
identity (see Appendix A.A for details). By virtue of the periodicity
of sinusoids, taking the expectation of Equation (A.10) erases the first
term of Equation (A.11), giving

Ep(ω,b)[ϕ(ω,b)(x)ϕ(ω,b)(x
′)]

= Ep(ω)[cos (ω⊤(x− x′))] +
(((((((((((((((

Ep(ω,b)[cos (ω⊤(x + x′) + 2b)]

= k(x, x′).

See Appendix A.B for details. Hence, the product in Equation (A.10)
is also an unbiased estimator of the kernel. For brevity, we shall write
ϕi(x) to signify ϕ(ω(i),b(i))(x) for ω(i) ∼ p(ω) and b(i) ∼ U [0, 2π]. The
analogous Fourier feature decomposition ϕ : RD → RL is given by

ϕ(x) ≜

√
2
L




cos (ω(1)⊤x + b(1))
...

cos (ω(L)⊤x + b(L))


 =

1√
L




ϕ1(x)
...

ϕL(x)


 . (A.12)

We refer to this Fourier feature decomposition, originally proposed
by Rahimi and Recht [206], as the phase-shifted cosine variant of rff.
Both mc estimators outlined in this section introduces error that decays
at the rate of O(L−1/2), which, notably, is independent of the input
dimensionality. A theoretical comparison of the Fourier feature de-
compositions of Equations (A.8) and (A.12) is given by Sutherland and
Schneider [254], who report that for the se kernel, the latter produces
strictly higher variance and results in worse bounds.

a.3.2 Quasi-Monte Carlo

We can readily improve upon the convergence of mc by employing
quasi Monte Carlo (qmc), which uses deterministic low-discrepancy
sequences to construct samples. We refer to this family of Fourier
feature decompositions as quasi-random Fourier features (qrff) [5,
294].

In particular, qmc approximates following integral over the unit
hypercube,

∫

[0,1]D
f (u)du ≈ 1

L

L

∑
i=1

f (u(i)), (A.13)

by sequentially constructing the samples u(i) deterministically us-
ing low-discrepancy sequences, thereby ameliorating the undesirable
effects of samples forming clusters that commonly occurs when sam-
pling independently at random. The interested reader may wish to
refer to the manuscripts by Caflisch [27] and Dick, Kuo, and Sloan
[58] for a more complete treatment of the topic.

To approximate multi-dimensional integrals with a Gaussian mea- multi-dimensional
Gaussian integrals
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sure over RD, we can apply a change-of-variables based on the Gaus-
sian inverse cumulative distribution function (cdf), or quantile function,
to reduce it to an integral in the form of Equation (A.13). Suppose we
have a multivariate Gaussian density q(ω). Then we can write

∫

RD
q(ω) f (ω)dω =

∫

[0,1]D
f (Φ−1(u))du, (A.14)

where Φ−1 : [0, 1]D → R is the quantile function of q.
For non-Gaussian densities p(ω) in general, we can utilise impor-

tance sampling to cast our problem into the Gaussian integral of Equa-importance sampling

tion (A.14), by using a Gaussian q(ω) as the proposal distribution,

∫

RD
p(ω) f (ω)dω =

∫

RD
q(ω)

(
p(ω)

q(ω)
f (ω)

)
dω

=
∫

[0,1]D
r(Φ−1(u)) f (Φ−1(u))du,

where r(ω) ≜ p(ω)/q(ω) is the importance weight, or likelihood ratio.
From this, we arrive at the following Fourier feature decomposition,

k(t, 0) ≈ 1
L

L

∑
i=1

r(Φ−1(u(i))) cos (Φ−1(u(i)) · t)

= φ(x)⊤φ(x′),

where

φ(x) ≜

√
2
L′




√
r(Φ−1(u(1))) cos

(
Φ−1(u(1)) · x

)

...√
r(Φ−1(u(L′/2))) cos

(
Φ−1(u(L′/2)) · x

)
√

r(Φ−1(u(1))) sin
(

Φ−1(u(1)) · x
)

...√
r(Φ−1(u(L′/2))) sin

(
Φ−1(u(L′/2)) · x

)




.

a.3.3 Quadrature

We now introduce quadrature Fourier features (qff) [6, 50, 180, 183].
We first restrict our attention to the one-dimensional case and defer
our discussion of the multi-dimensional case when we introduce the
multi-dimensional generalisations of numerical quadrature, sometimes
referred to as cubature.

A quadrature formula that approximates the following integral by aGaussian-Christoffel
quadrature;

Gaussian quadrature
finite sum ∫ b

a
w(u) f (u)du ≈

L

∑
i=1

αi f (ξi) (A.15)
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is called a Gauss-Christoffel quadrature formula (or simply a Gaussian
quadrature formula) if it has maximum degree of exactness, i. e., if
Equation (A.15) is an exact equality whenever f is a polynomial of
degree 2L− 1 [80]. We refer to ξi as a the Christoffel abscissas and αi the
Christoffel weights associated with the weight function w(u). The case
of w(u) ≜ 1 on the interval [−1, 1] was first studied by Gauss [79], and
is now referred to as Gauss-Legendre quadrature. Other classical cases
are associated with the names of Jacobi, Laguerre, and Hermite. The
formulation based on orthogonal polynomials was advanced by Jacobi
[112]. A comprehensive though possibly now outdated review of the
topic of Gauss-Christoffel quadrature can be found in the landmark
survey of Gautschi [81].

a.3.3.1 Gauss-Hermite Quadrature

The weight function serves to help factor out unruly behaviour in the
integrand. Particularly relevant is the case of Gauss-Hermite quadra-
ture, in which the weight function of interest is w(u) ≜ e−u2

and Gauss-Hermite
quadraturethe interval of integration is (−∞, ∞). That is, we’re interested in

approximating integrals of the form
∫ ∞

−∞
e−u2

f (u)du (A.16)

The nodes ξi are roots of HL(u), the Hermite polynomial of degree L,
and the associated weights αi are given by

αi ≜
2L−1L!

√
π

L2[HL−1(ξi)]2
.

It is not hard to appreciate the power of this quadrature formula, for it
is trivial to apply it to the calculation of expectations under Gaussian
distributions, a quantity upon which many problems in statistical ml Gaussian

expectationsrely. In particular, we are often interested in computing the expected
value of f (ω) under p(ω) = N (ω | µ, σ2),

Ep(ω)[ f (ω)] =
∫ ∞

−∞
N (ω | µ, σ2) f (ω)dω (A.17)

=
1√

2πσ2

∫ ∞

−∞
e−
(

ω−µ√
2σ

)2

f (ω)dω.

Simply by making a change-of-variable u = ω−µ√
2σ
⇔ ω =

√
2σu + µ,

we can rewrite Equation (A.17) in the form of Equation (A.16),

Ep(ω)[ f (ω)] =
1√
π

∫ ∞

−∞
e−u2

g(u)du, (A.18)

where we’ve defined g(u) ≜ f (
√

2σu + µ). We thus have the following
quadrature formula:

Ep(ω)[ f (ω)] ≈ 1√
π

L

∑
i=1

αig(ξi).
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Recall that by Equation (2.41), assuming its spectral density p(ω)

is even symmetric, we can express a stationary kernel k(t, 0) as the
expected value of function f (ω) = cos(ωt) under p(ω). Let us first
focus on the case of the se kernel, the spectral density of which is givenKernel decomposition

of the se kernel based
on Gauss-Hermite

quadrature

in Equation (2.40) as a Gaussian, p(ω) = N
(
ω | 0, ℓ−2). Therefore, by

Equation (A.18), with g(u) = f
(√

2u/ℓ
)
= cos

(√
2ut/ℓ

)
, we can write

k(t, 0) =
1√
π

∫ ∞

−∞
e−u2

cos

(√
2ut
ℓ

)
du (A.19)

≈ 1√
π

L

∑
i=1

αi cos

(√
2ξit
ℓ

)
. (A.20)

By Equation (2.43), we have

cos

(√
2ξit
ℓ

)
= cos

(√
2ξi(x− x′)

ℓ

)

= φ(
√

2ξi/ℓ)(x)⊤φ(
√

2ξi/ℓ)(x′),

where φ(·)(x) is defined in Equation (2.42). Accordingly, as in Equa-
tion (A.7), we have the Fourier feature decomposition φ : R→ RL′ ,

φ(x) ≜
1

4
√

π




√
α1 cos

(√
2ξ1x
ℓ

)

...
√

αL cos
(√

2ξLx
ℓ

)

√
α1 sin

(√
2ξ1x
ℓ

)

...
√

αL sin
(√

2ξLx
ℓ

)




.

Extending this to kernels with non-Gaussian spectral densities can
be done using the importance sampling technique described in the
preceding section.

a.3.3.2 Gauss-Legendre Quadrature

Let us consider the classical case of Gauss-Legendre quadrature, inGauss-Legendre
quadrature which the weight function of interest is w(u) ≜ 1 and the interval

of integration is [−1, 1]. That is, we’re interested in approximating
integrals of the form ∫ 1

−1
f (u)du

The nodes ξi are roots of PL(u), the Legendre polynomial of degree L
normalized to give PL(1) = 1, and the associated weights ai are given
by

αi ≜
2(

1− ξ2
i

)
[P′L(ξi)]2

.
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An integral over [a, b] must be changed into an integral over [−1, 1] Change of interval

before applying Gauss-Legendre quadrature,

∫ b

a
f (ω)dω =

∫ T(1)

T(−1)
f (ω)dω =

∫ 1

−1
f (T(u))T′(u)du,

where T : [a, b]→ [−1, 1] is a differentiable function with a continuous
derivative. In particular, for integration over the infinite interval, we
can use the substitution T(u) = tan

(
π
2 u
)

to give

∫ ∞

−∞
f (ω)dω =

π

2

∫ 1

−1

f
(
tan

(
π
2 u
))

cos2
(

π
2 u
) du,

where we’ve used T′(u) = π
2

1
cos2( π

2 u)
. A myriad other choices are

also available. For instance, Mutnỳ and Krause [184] use T(u) ≜
cot
(

π
2 (u + 1)

)
to give

T′(u) = −π

2
1

sin2 (π
2 (u + 1)

) ,

and ∫ ∞

−∞
f (ω)dω =

π

2

∫ 1

−1

f
[
cot
(

π
2 (u + 1)

)]

sin2 (π
2 (u + 1)

) du.

Recall that in Gauss-Hermite quadrature, our integrand of interest
is f (ω) = cos(ωt). That is, the contribution of the spectral density
p(ω) is absorbed into the weight function. In contrast, when using
Gauss-Legendre quadrature, our integrand explicitly includes the
contribution from the spectral density, f (ω) = p(ω) cos(ωt). There-
fore, we can directly incorporate non-Gaussian spectral densities p(ω)

without needing to resort to importance sampling. However, unlike in
Gauss-Hermite quadrature, we will not be able to isolate potentially
deleterious effects of the spectral density from our approximation.

All in all, we have the Fourier feature decomposition φ : R→ RL′ ,

φ(x) ≜
√

π

2




√
α1 p(tan ( π

2 ξ1))
cos2( π

2 ξ1)
cos

(
tan

(
π
2 ξ1
)
· x
)

...√
αL p(tan ( π

2 ξL))
cos2( π

2 ξL)
cos

(
tan

(
π
2 ξL
)
· x
)

√
α1 p(tan ( π

2 ξ1))
cos2( π

2 ξ1)
sin
(
tan

(
π
2 ξ1
)
· x
)

...√
αL p(tan ( π

2 ξL))
cos2( π

2 ξL)
sin
(
tan

(
π
2 ξL
)
· x
)




.

The error of a Gaussian quadrature formula is as follows [248], Gaussian quadrature
error analysis∫ b

a
w(u) f (u)du−

L

∑
i=1

ai f (ξi) =
f (2L)(θ)

(2L)!
⟨pL, pL⟩, (A.21)
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for some θ ∈ (a, b) where pL is a monic orthogonal polynomial of
degree L, and ⟨·, ·⟩ is the scalar product associated with the weight
function w(u),

⟨p, q⟩ =
∫ b

a
w(u)p(u)q(u)du.

Let us now consider quadrature for functions of several variables,Cubature:
quadrature in

multiple dimensions f (u) = f (u1, . . . , uD).

For weight functions w that factorise as

w (∥u∥2) =
D

∏
d=1

w(ud), (A.22)

we have
∫

RD
w (∥u∥2) f (u)du =

∫
· · ·

∫ D

∏
d=1

w(ud) f (u1, . . . , uD)du1 · · ·duD

=
∫

w(uD)

(∫
w(uD−1) · · ·

(∫
w(u1) f (u1, . . . , uD)du1

)
· · ·duD−1

)
duD

≈
LD

∑
i=1

α
(D)
i

(∫
w(uD−1) · · ·

(∫
w(u1) f (u1, . . . , ξ

(D)
i )du1

)
· · ·duD−1

)

...

≈
L1

∑
i1=1
· · ·

LD−1

∑
iD−1=1

LD

∑
iD=1

α
(1)
i1
· · · α(D−1)

iD−1
α
(D)
iD

f (ξ(1)i1
, . . . , ξ

(D−1)
iD−1

, ξ
(D)
iD

),

(A.23)

where ξ
(d)
i and α

(d)
i are the Ld > 0 abscissa and weights for quadra-

ture along the dth dimension. In other words, for weight functions
that satisfy Equation (A.22), we can decompose its multi-dimensional
quadrature through repeated application of one-dimensional quadra-
ture along each dimension.

The nested sum of Equation (A.23) can be written as a single sum
over the elements of the D-ary Cartesian product of the quadrature
nodes along each dimension (ξ

(1)
1 · · · ξ

(1)
L1
), . . . , (ξ(D)

1 · · · ξ(D)
LD

), of which
there are in total ∏D

d=1 Ld. Assuming for simplicity that Ld = L for
all d = 1, . . . , D and some L > 0, then there are a total of of LD

quadrature nodes. That is, the number of nodes grows exponentially
in the input dimensionality.

The weight function in Gauss-Legendre quadrature trivially sat-
isfies Equation (A.22). It is easy to verify that it is also satisfied
by the weight function in Gauss-Hermite quadrature. Namely, for
w(u) ≜ e−u2

, we have

e−∥u∥
2
2 = e−∑D

d=1 u2
d =

D

∏
d=1

e−u2
d .
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a.3.3.3 Newton-Cotes Quadrature

Let us now consider an alternative to Gaussian quadrature, namely, the
quadrature rules of Newton and Cotes, which is obtained by replacing
the integrand with a suitable interpolating polynomial P(u). Consult Newton-Cotes

quadraturethe text of Stoer and Bulirsch [248] for a more complete treatment of
the subject. Consider a uniform partition of the closed interval [a, b]
with

ξi ≜ a + ih,

and step width h ≜ b−a
m , for some integer m > 0, and let Pm be the

interpolating polynomial of degree m or less with

Pm(ξi) = fi ≜ f (ξi)

for i = 0, 1, . . . , m. Lagrange’s interpolation formula gives

Pm(u) ≜
m

∑
i=0

fiLi(u), Li(u) ≜
m

∏
j=0
j ̸=i

u− ξ j

ξi − ξ j
.

Integration gives
∫ b

a
Pm(u)du = h

m

∑
i=0

αi f (ξi)

where the weights αi are some function strictly of m, and crucially not
dependent on the integrand f , nor on the boundaries of the interval,
a, b.

In the case of m = 2, we obtain the approximation Simpson’s rule

∫ b

a
f (u)du ≈

∫ b

a
P2(u)du =

h
3
( f (ξ0) + 4 f (ξ1) + f (ξ2)),

which is commonly known as Simpson’s rule.
Consider a step width h > 0 such that

b = a + L′h

for some positive even integer L′ = 2L, L > 0. We can apply Simpson’s
rule to each subinterval [ξ2k−2, ξ2k−1, ξ2k], where k = 1, . . . , L. Compound

Simpson’s rule∫ b

a
f (u)du =

L

∑
k=1

∫ ξ2k

ξ2k−2

f (u)du

≈ h
3

L

∑
k=1

[ f (ξ2k−2) + 4 f (ξ2k−1) + f (ξ2k)] (A.24)

≜ S [ f ].

We can rearrange by odd and even terms to get

S [ f ] =
h
3

(
4

L

∑
k=1

f (ξ2k−1) + 2
L

∑
k=1

f (ξ2k) + f (ξ0)− f (ξL′)

)
.
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Figure A.4: The integrand H(u) = e−u2
cos

(√
2ut
ℓ

)
which becomes increas-

ingly oscillatory as the lengthscale decreases ℓ = 4−k where
k = 0, 1, 2.

We can also write

S [ f ] =
L′

∑
i=0

γi f (ξi)

where

γi =





4
3 h i odd,
2
3 hci i even.

and ci =





1
2 i = 0 or i = L′,

1 0 < i < L′.

for i = 0, . . . , L′. Denoting the odd and even terms as

Sodd ≜
L

∑
k=1

f (ξ2k−1), (A.25)

Seven ≜
L

∑
k=1

f (ξ2k) +
f (ξ0)− f (ξL′)

2
(A.26)

=
L

∑
k=0

f (ξ2k)−
f (ξ0) + f (ξL′)

2
,

respectively, we can simplify Equation (A.24) as

S [ f ] =
h
3
(4 · Sodd + 2 · Seven) . (A.27)

Newton-Cotes error
analysis

a.3.3.4 Filon’s rule for highly-oscillatory integrals

Recall from Equation (A.19) that the integrand in which we’re inter-Highly-oscillatory
integrals
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ested is

F(u) = e−u2
cos

(√
2ut
ℓ

)
(A.28)

See Figure A.4 for surface plots of this function at varying settings of
ℓ. More broadly, consider integrals of the form

∫ b

a
g(u) cos(ut)du, and

∫ b

a
g(u) sin(ut)du, (A.29)

or, more generally, ∫ b

a
g(u)eiut du, (A.30)

of which Equation (A.19) is clearly an instance.
An extension of Simpson’s rule that is aimed at dealing with highly- Filon’s rule

oscillatory integrals, known as Filon’s rule [69]. Consider integrands
of the form

f (u) = g(u) cos(ut)

Let θ ≜ ht so that 1/t = h/θ. We have

∫ b

a
g(u) cos(ut)du =

L

∑
k=1

∫ ξ2k

ξ2k−2

g(u) cos(ut)du

≈ 1
t

[
4
θ

(
sin θ

θ
− cos θ

) L

∑
k=1

f (ξ2k−1)

+
1
θ

(
1 + cos2 θ − 2 cos θ sin θ

θ

)(
2

L

∑
k=1

f (ξ2k) + f (ξ0)− f (ξL′)

)

+

(
1 +

cos θ sin θ

θ
− 2 sin2 θ

θ2

)
[g(ξL′) sin(ξL′ t)− g(ξ0) sin(ξ0t)]

]

=
h
θ3

[
4 (sin θ − θ cos θ)

L

∑
k=1

f (ξ2k−1)

+
(
θ(1 + cos2 θ)− 2 cos θ sin θ

)
(

2
L

∑
k=1

f (ξ2k) + f (ξ0)− f (ξL′)

)

+
(
θ2 + θ cos θ sin θ − 2 sin2 θ

)
[g(ξL′) sin(ξL′ t)− g(ξ0) sin(ξ0t)]

]

≜ F [g] (A.31)

Note that we can also write

F [g] =
L′

∑
i=0

γig(ξi)

+ γ (g(ξL′) sin (ξL′ t)− g(ξ0) sin (ξ0t))
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where

γi =





αh i odd

βhci i even
,

ci =





1
2 i = 0 or i = L′

1 0 < i < L′
.

for i = 0, . . . , L′.
Using Equations (A.25) and (A.26), we can simplify Equation (A.31)

to

F [g] =h [α · Sodd + β · Seven

+γ (g(ξL′) sin (ξL′ t)− g(ξ0) sin (ξ0t))]
(A.32)

where

α ≜
4
θ3 [sin θ − θ · cos θ] ,

β ≜
2
θ3

[
θ · (1 + cos2 θ)− 2 cos θ sin θ

]
,

γ ≜
1
θ3

[
θ2 + θ · cos θ sin θ − 2 sin2 θ

]
.

Now, by expanding α, β, and γ in powers of θ, we get

α =
4
3
− 2θ2

15
+

θ4

210
− θ6

11340
+

θ8

997920
− θ10

129729600
+ · · ·

β =
2
3
+

2θ2

15
− 4θ4

105
+

2θ6

567
− 4θ8

22275
+

4θ10

675675
− · · ·

γ =
2θ3

45
− 2θ5

315
+

2θ7

4725
− 8θ9

467775
+

4θ11

8513505
− · · ·

It is clear to see that as θ → 0 (or, equivalently, as t→ 0) we have

α→ 4
3

, β→ 2
3

, γ→ 0.

In other words, Filon’s rule of Equation (A.32) reduces exactly to
Simpson’s rule of Equation (A.27). This suggests that for sufficiently
small values of t, Simpson’s rule is just as good as Filon’s rule when it
comes to dealing with highly-oscillatory integrals. Of course, another
way to look at it is that Filon’s rule may actually be no better than
Simpson’s rule in this setting.

a.3.4 Other Approaches

Another notable approach is the orthogonal random features (orf) [41,
42, 298], which selects frequencies according a an appropriately scaled
random orthogonal matrix instead of a random Gaussian matrix. In
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Figure A.5: se kernel with variance 1 and lengthscale ℓ = 1/5, and various
approximations thereof, visualized on the domain [−3, 3]. In this
domain, apart from Gauss-Hermite quadrature, the difference
between quadrature methods is virtually indistinguishable for
L = 44 = 256.
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Figure A.6: se kernel with variance 1 and lengthscale ℓ = 1/5, and various
approximations thereof, visualized on the domain [−150, 150].
The advantages of Filon’s rule appear only to be realized when
|x− x′| > 100 where the spurious oscillations begin to attenuate.

particular, let’s define matrix W as the collection of L frequencies

sampled from the kernel’s spectral density, W =
[
ω1 · · ·ωL

]⊤
∈

RL×D. We can write Equation (A.8) as

φ(x) ≜

√
2
L′

[
cos (Wx)

sin (Wx)

]
.

Furthre, by Equation (A.8) and Table 2.1, the matrix W of rff can be
written as

W = M− 1
2 G

where G is a Gaussian random matrix. For orf, we assume L = D so
that G is a square matrix, and set

W ≜ M− 1
2 SQ,
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where Q is the orthogonal matrix such that QR = G for some upper
triangular matrix R, and S = diag(s1, · · · , sD) with si ∼ χD, where χD

denotes the χ-distribution1 with D degrees of freedom. The transfor-
mation by S has the effect of making the rows of SQ and G identically
distributed.

A number of relevant approaches, such as Fastfood [141], À la
Carte [297] and the Nyström approximation [287, 296], have been
excluded from the scope this work.

a.4 experiments

a.4.1 Prior Approximation

We’re interested in the relative error, defined as the Frobenius norm
of the difference between the kernel’s exact Gram matrix K, and
its approximation based on an Fourier feature decomposition ΦΦ⊤,
normalized by the Frobenius norm of K,

relative error ≜
∥K−ΦΦ⊤∥F

∥K∥F
.

We restrict our focus to the Fourier feature decompositions that have
been outlined in this report: rff and its phase-shifted cosine variant,
qff, specifically its variants based on Gaussian quadrature (Gauss-
Legendre, Gauss-Hermite), and Newton-Cotes quadrature (Simpson’s
rule), qrff with Sobol sequences, and finally, orf. We consider a
number of datasets, namely, motorcycle, iris, diabetes, boston,
wine, and breast cancer, and look at two kernels: the se and Matérn-
5/2 kernels both with decreasing lengthscales ℓ = 4−k for k = 0, 1, 2.

See Figures A.7 and A.8 for results on the se and Matérn-5/2 kernels,
respectively. For methods with an inherent source of randomness, we
report the mean and 95% confidence interval across 25 repetitions.

For the se kernel, the picture is clear: for problems of moderate
dimensionality (say, D < 5), Gaussian quadrature methods are far
more efficient than any competing method. Furthermore, in the case
of D = 1, the deleterious effects of small lengthscales are barely
noticeable. In all settings of the lengthscale, kernel decompositions
based on quadrature rapidly converges to the exact kernel, and require
orders of magnitude fewer features.

1 not to be confused with the χ2-distribution
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Figure A.7: Comparing the efficiency of various Fourier feature decomposi-
tions for the se kernel.



158 improved decoupled sampling of gaussian processes

In the case of D = 4, We see that Gauss-Hermite still outperforms
all other methods for settings of the lengthscale above ℓ = 2−4, though
perhaps less dramatically,

On the other hand, for the same dimensionality, Gauss-Legendre
already begins to perform worse than all other methods. In fact, in all
remaining problems (where dimensionality D > 5), Gauss-Legendre
performs orders of magnitude worse (by orders of 102 or more). For
the sake of readability, we’ve omitted the results of Gauss-Legendre
and Simpson as these distort the scale of the plot dramatically.

As we move on to higher dimensions, particular in D = 10, the
performance of Gauss-Hermite quadrature already degrades so sig-
nificantly that it has become the worst of all competing methods.
Furthermore, it becomes practically inapplicable beyond D = 13. In
dimensionality D ≥ 10 where Gauss-Hermite quadrature is still feasi-
ble, we see that its curves are truncated. This is because the errors are
reported for just two settings of number of features. Recall that the
number of features in multidimensional quadrature is LD for some
L > 0. When D ≥ 10, for any setting of L > 2, this clearly becomes
prohibitively large. Therefore, in such high-dimensional problems, we
are restricted to setting L ≤ 2. However, this is amounts to computing
up to just two abscissa along the real line and then taking their D-ary
Cartesian power to form D-dimensional quadrature nodes. Thus seen,
it is no surprise that it fails to yield good results.

Outside of quadrature methods, we see that Quasi-random performs
consistently well, in both low- and high-dimensional regimes. In low
dimensions, it is second only to quadrature methods; in high dimen-
sions, it consistently outperforms all competing methods. Therefore,
it’s safe to conclude that for the se kernel in low-dimensional settings,
one should prefer Gauss-Hermite qff and in high-dimensional settings
one should resort to qrff.

For the Matérn-5/2 kernel, the story is quite similar, with one major
exception: Quasi-random performs considerably worse and with far
higher variance, particularly in high dimensions. Recall that to extend
qrff to kernels non-Gaussian spectral densities we are required to re-
sort to importance sampling. Although this still results in an unbiased
estimator, the variance is now a function of the likelihood ratio r(·),
which is prone to taking on large values in high-dimensional settings.
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Figure A.8: Comparing the efficiency of various Fourier feature decomposi-
tions for the Matérn-5/2 kernel.
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a.4.2 Posterior Sample Approximation

To assess the quality of posterior samples, we follow the approach
of Wilson et al. [289], namely, by measuring the 2-Wasserstein dis-
tance [161] between the exact gp posterior and an empirical distribu-
tion constructed from samples.

0.0 0.5 1.0
x

−2

0

2
y

Figure A.9: An example a synthetic problem in 1D. In this illustration, there
are N = 26 crosses (‘×’) which represent the observations, and
T = 28 vertical notches along the horizontal axis which represent
the test, or query, points. The observations are generated using a
gp with a se kernel with unit variance and lengthscale ℓ = 2−4,
while the test points are sampled uniformly at random. The
blue curves are samples drawn from the exact gp posterior at
the test points. Similarly, the green curves are 24 samples drawn
from the weight-space approximate posterior, and the orange
curves are samples generated with decoupled sampling. The
kernel approximations are based on an rff decomposition using
L = 256 samples.

Toy datasets are synthesized as follows. The N training locations
X are sampled uniformly at random and their corresponding obser-
vations are generated from the prior y ∼ GP(0, Kff + β−1I) with
observation noise variance β−1 = 10−3, using the se kernel with unit
amplitude and lengthscales of decreasing order ℓ = 4−k for k = 0, 1, 2.
Likewise, the T test locations X∗ are sampled uniformly at random
from U [0, 1]T×D, where we set T = 26 = 64. The above is repeated to
generate D-dimensional datasets for D = 20, . . . , 24. See Figure A.9 for
an example problem in one dimension.

Consistent with the findings of Wilson et al. [289], we observe the
decoupled sampling scheme to be robust against variance starvation.
In particular, the distance remains largely the same irrespective of the
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training size N. Consequently, we only report results for the setting
N = 27 = 128.

To eliminate confounding factors, we restrict our attention to exact
gps using the se kernel with known and fixed hyperparameters, i. e.
the hyperparameters that were used to synthesise the observed data.
In total, 212 = 4, 096 samples of f∗ | y are used as unbiased estimates
(µ̂∗|f, Σ̂∗∗|f) of the exact posterior moments (µ∗|f, Σ∗∗|f) given in Equa-
tion (A.2). The 2-Wasserstein distances are then computed based on
these moments,

W2

(
N (µ∗|f, Σ∗∗|f),N (µ̂∗|f, Σ̂∗∗|f)

)2
.

This is computed both for samples from the weight-space approximate
posterior, and for samples generated with decoupled sampling, shown
in Figures A.10 and A.11, respectively.

We restrict our focus to the Fourier feature decompositions that have
been outlined in this chapter: rff, qff, specifically its variants based on
Gaussian quadrature (Gauss-Legendre, Gauss-Hermite), and Newton-
Cotes quadrature (Simpson’s rule), qrff with Sobol sequences, and
finally, orf.

Lastly, we report, for each combination of dimensionality D and
kernel lengthscale ℓ, the mean and 95% confidence interval across 5

repetitions.
As expected, for the weight-space approximation as pictured in Fig-

ure A.10, having a tighter approximation of the Fourier feature decom-
position to the kernel seems to have a large positive effect. Particularly,
we see that in low dimensionalities (D < 5) with sufficiently large
lengthscales, the distances are considerably lower when using qff

with Gauss-Hermite quadrature.
On the other hand, for the samples generated with decoupled sam-

pling as pictured in Figure A.11, the distances are far less discernible
from one another.

In the weight-space view, neither the mean nor the variance match
that of the exact posterior. However, as we improve the kernel approx-
imation (specifically, as we double the number of quadrature nodes),
we observe a dramatic improvement in the approximation. In the last
two panes (reading from left to right) with 27 and 28 nodes, the dif-
ference is virtually indistinguishable to the naked eye. In contrast, in
decoupled pathwise sampling, we have equality in expectation – that is,
the mean match up regardless of the quality of the kernel approxima-
tion. On the other hand, we do not have equality in distribution, so the
variance is still dependent on the quality of the kernel approximation.
We see that in the very beginning, with a few nodes, it already does
a fairly good job of approximating the variance outside the regions
in which the the observations are located. On the other hand, inside
such regions it appears to severely underestimate the variance. What
worse is that it doesn’t seen to get better as we improve the kernel
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approximation. Indeed, doubling the number of nodes does not seem
to change anything.

Increasing the number of nodes does seem to help, but only up to a
point. Beyond 28 nodes, it is doubtful whether the approximation will
improve. It is also unknowable, as this is around the limits of numerical
precision. Yet, even with this amount of nodes, the understimation of
the variance still persists.

We note, however, that it is difficult to draw conclusions using
the 2-Wasserstein distance with empirical distributions. Beyond the
numerical stability issues, note that even with samples from the exact
gp drawn using the conventional location-scale transform approach,
the distance based on empirical estimates are on the order of 10−2 (in
theory, it should be 0).

Alternatively, it may be worthwhile to instead consider the nlpd of
the samples under the exact gp posterior, or using the kl divergence.
In particular, the kl divergence between Gaussian distributions with
the same mean m but different covariances N (m, Σ0) and N (m, Σ1)

is

kl [N0 ∥ N1] =
1
2

[
ln |Σ1Σ−1

0 |+ tr
(

Σ−1
1 (Σ0 − Σ1)

)]
. (A.33)

Recall from Equations (A.3) and (A.6) that the covariance of a decou-
pled pathwise sample from a sparse gp posterior is

Σ0 ≜ Φ∗Φ⊤∗ − 2K∗uK−1
uu ΦΦ⊤∗ + K∗uK−1

uu ΦΦ⊤K−1
uu Ku∗,

while that of a sparse gp posterior is

Σ1 ≜ Σ∗∗|u = K∗∗ −K∗uK−1
uu Ku∗.

Further, the mean of both is

m ≜ µ∗|u = K∗uK−1
uu u.

Taking the kl divergence between Gaussians with these means and
covariances is an attractive alternative to the 2-Wasserstein distance
described above, since it is more numerically stable and can be com-
puted analytically without resorting to empirical estimates. In fact,
this author perceives no good reason to use empirical estimates, let
alone the 2-Wasserstein distance, when we have the exact moments m,
Σ0, and Σ1 readily available to us.

a.5 summary

We motivated the work summarised in this chapter by showing that
the quality of decoupled pathwise samples still depends crucially on
the quality of the kernel approximation.

We conducted a survey of existing Fourier feature decompositions
for approximating stationary kernels to provide a better understanding
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Figure A.10: Weight-space approximate posterior samples (se kernel).

of the tightness of these various approximations. In doing so, we also
made variations on existing schemes to construct new decompositions,
or expanded the applicability of existing decompositions to classes of
kernels beyond the se kernel.

We also highlighted a significant shortcoming with an existing
class of schemes, namely Gaussian quadrature, in dealing with small
lengthscales. Small lengthscales in effect lead to highly-oscillatory
integrals that are difficult to approximate. Unfortunately, efforts to
ameliorate these shortcomings came up short, as it is not analytically
possible to factorise the approximation into an inner product of feature
maps. Furthermore, there is evidence to suggest that the benefits of
more sophisticated schemes to deal with high-oscillations are only
realised at scales well outside the input domains in which we’re
typically interested for practical purposes.

Lastly, contrary to our motivating hypothesis, we did not find a
strong positive correlation between tightness of kernel approximation
and quality of decoupled pathwise samples. However, we also under-
scored the potential flaws of the existing methods to assess sample
quality, and emphasised that our empirical findings be taken with
a pinch of salt. We suggest in future work that more attention be
devoted to devising more principled methods for assessing sample
quality.
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Figure A.11: Samples generated using decoupled sampling (se kernel).



A D D E N D U M

a.a product-to-sum identity

The product-to-sum identity, which follows as an immediate conse-
quence of Equation (2.52), is given by

2 cos α cos β = cos (α + β) + cos (α− β). (A.34)

a.b zero in expectation

By the law of total expectation, we can rewrite the expectation as

Ep(ω,b)[cos (ω⊤(x + x′) + 2b)]

= Ep(ω)

[
E[cos (ω⊤(x + x′) + 2b) |ω]

]
.

For notational convenience, we set θ ≜ ω⊤(x + x′). The inner expecta-
tion evaluates to

E[cos (θ + 2b) |ω] =
∫ 2π

0
cos (θ + 2b)p(b)db

=
1

2π

∫ 2π

0
cos (θ + 2b)db

=
1

2π
sin (θ + 2b)

∣∣∣
2π

0

=
1

2π
[sin (θ + 4π)− sin (θ)] = 0

since the sine function is 2π-periodic, i. e., sin (θ + 2π · k) = sin (θ) for
any integer k.
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